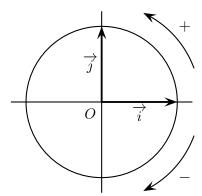
ONCTIONS TRIGONOMÉTRIQUES

Ι Cercle trigonométrique : mesure des angles orientés.

Dans le plan muni d'un repère $(O, \overrightarrow{i}, \overrightarrow{j})$, le cercle trigonométrique est le cercle de centre O et de rayon 1 sur lequel on a choisit:

- un sens direct, ou sens positif, sens inverse des aiguilles dune montre
- un sens indirect, ou sens négatif, sens des aiguilles dune montre.



Sur le cercle trigonométrique, la mesure en radians dun angle orienté est égale à la mesure algébrique (avec un signe) de larc intercepté

Exemple

Un tour complet, soit 360° , mesure 2π radians.

$$\frac{2\pi}{4} = \frac{\pi}{2}$$
 radians (1/4 de tour).

 $\frac{2\pi}{4} = \frac{\pi}{2} \text{ radians (1/4 de tour)}.$ On parle d**une** mesure de langle orienté car il en possède une infinité :
L'angle orienté (\overrightarrow{i} ; \overrightarrow{j}) mesure $-\frac{\pi}{2}$ radians. $\frac{\pi}{2}$ radians, $\frac{\pi}{2} + 2\pi = \frac{5\pi}{2}$ rad, $\frac{5\pi}{2} + 2\pi = \frac{9\pi}{2}$ rad,..., $\frac{\pi}{2} - 2\pi = -\frac{3\pi}{2} \text{ rad,...}$

Exemple

Compléter:

Degrés	0	30	45	60	90	135	180	360
Radians	0							

Degrés	1		-15	20	270		
Radians		1				$\frac{167\pi}{4}$	$\frac{7\pi}{3}$

L'angle orienté $(\overrightarrow{j}; \overrightarrow{i})$ a plusieurs mesures : $\frac{3\pi}{2}$; $-\frac{\pi}{2}$; $\frac{3\pi}{2} + 2\pi$... Sa mesure principale est $-\frac{\pi}{2}$

Exemple

Déterminer la mesure principale des angles orienté suivants :

a.
$$\frac{7\pi}{3}$$

a.
$$\frac{7\pi}{3}$$
 b. $-\frac{11\pi}{6}$ c. $\frac{9\pi}{8}$ d. $\frac{15\pi}{2}$ e. $\frac{26\pi}{4}$ f. $-\frac{13\pi}{5}$

c.
$$\frac{9\pi}{8}$$

d.
$$\frac{15\pi}{2}$$

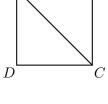
e.
$$\frac{26\pi}{4}$$

f.
$$-\frac{13\pi}{5}$$

Sinus et cosinus d'un nombre réel \mathbf{II}

Exemple

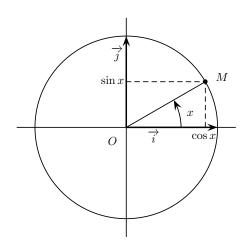
a. ABCD est un carré de côté 1. Calculer la longueur AC, puis en déduire les valeurs exactes de $\cos\left(\frac{\pi}{4}\right)$ et $\sin\left(\frac{\pi}{4}\right)$.



b. RST est un triangle équilatéral de côté Calculer la longueur TI, en déduire les valeurs exactes de $\sin{(\frac{\pi}{6})}$, $\cos{(\frac{\pi}{3})}$ et $\sin\left(\frac{\pi}{3}\right)$.

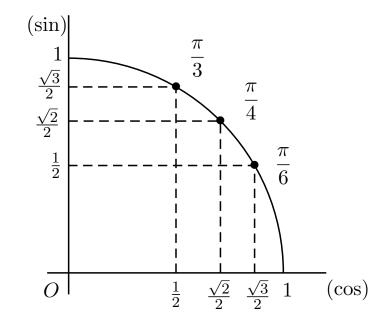
Soit M un point du cercle trigonométrique, et x une mesure de langle orienté $(\overrightarrow{i}; \overrightarrow{OM})$.

- Le **cosinus** de x, noté $\cos(x)$, est labscisse de M
- Le sinus de x, noté $\sin(x)$, est lordonnée de M



Angles remarquables:

x	0°/0rad	30° / $\frac{\pi}{6}$ rad	45° $/\frac{\pi}{4}rad$	$\begin{array}{c} 60^{\circ} \\ / \frac{\pi}{3} rad \end{array}$	$\begin{array}{c} 90^{\circ} \\ /\frac{\pi}{2} rad \end{array}$
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0



Ces valeurs particulières sont à connaître dans hésiter!

Pour tout réel x:

- \bullet $-1 \le \cos(x) \le 1$
- $-1 \le \sin(x) \le 1$
- $\cos(x)^2 + \sin(x)^2 = 1$
- cos(-x) = cos(x) (fonction paire)
- $\sin(-x) = -\sin(x)$ (fonction impaire)
- $\cos(x + 2k\pi) = \cos(x)$ avec $k \in \mathbb{Z}$
- $\sin(x + 2k\pi) = \sin(x)$ avec $k \in \mathbb{Z}$

Exemple

Déterminer les valeurs exactes de :

a.
$$\cos\left(-\frac{\pi}{3}\right)$$

b.
$$\cos{(\frac{2\pi}{3})}$$

c.
$$\cos\left(\frac{5\pi}{6}\right)$$

a.
$$\cos(-\frac{\pi}{3})$$
 b. $\cos(\frac{2\pi}{3})$ c. $\cos(\frac{5\pi}{6})$ d. $\cos(-\frac{3\pi}{4})$ e. $\sin(\frac{4\pi}{3})$

e.
$$\sin\left(\frac{4\pi}{3}\right)$$

- Deux angles sont dits associés s'ils admettent des cosinus et des sinus égaux ou opposés.
- Pour tout nombre réel x on a :

$$\bullet \ \cos(-x) = \cos(x)$$

$$\bullet \ \cos(x+\pi) = -\cos(x)$$

$$\bullet \ \cos\left(\pi - x\right) = -\cos\left(x\right)$$

•
$$\cos(\pi^{-}x) = \cos(x)$$

• $\cos(\frac{\pi}{2} + x) = -\sin(x)$
• $\cos(\frac{\pi}{2} - x) = \sin(x)$

•
$$\cos\left(\frac{\pi}{2} - x\right) = \sin\left(x\right)$$

$$\bullet \sin(-x) = -\sin(x)$$

$$\bullet \sin(x+\pi) = -\sin(x)$$

$$\bullet \sin(\pi - x) = \sin(x)$$

•
$$\sin\left(\frac{\pi}{2} + x\right) = \cos\left(x\right)$$

•
$$\sin\left(\frac{\pi}{2} + x\right) = \cos\left(x\right)$$

• $\sin\left(\frac{\pi}{2} - x\right) = \cos\left(x\right)$

Simplifier les expressions :

a.
$$A = \cos(\frac{\pi}{2} - x) + \sin(-x) + \cos(-x)$$

a.
$$A = \cos(\frac{\pi}{2} - x) + \sin(-x) + \cos(-x)$$

b. $B = \sin(\pi - x) + \cos(\pi + x) + \sin(x + \pi)$
c. $C = \sin(\frac{\pi}{2} - x) + \cos(\pi - x) + \sin(-x)$
d. $D = \cos(x + \pi) + \sin(\pi - x) + \cos(x + 2\pi)$

b.
$$B = \sin(\pi - x) + \cos(\pi + x) + \sin(x + \pi)$$

d.
$$D = \cos(x+\pi) + \sin(\pi - x) + \cos(x + 2\pi)$$

IVÉquations trigonométriques

• Les solutions dans $\mathbb R$ de l'équation $\cos{(x)}=\cos{(a)}$ sont : $\begin{cases} x=a+2k\pi\\ x=-a+2k\pi \end{cases}$ où k est un entier relatif quelconque.

• Les solutions dans \mathbb{R} de l'équation $\sin(x) = \sin(a)$ sont : $\begin{cases} x = a + 2k\pi \\ x = \pi - a + 2k\pi \end{cases}$ où k est un entier relatif quelconque.

Exemple

Résoudre les équations sur \mathbb{R} , puis sur $[0; 4\pi]$:

a.
$$\cos x = \cos(\frac{\pi}{6})$$

b.
$$\sin x = \sin(\frac{2\pi}{3})$$

c. $\cos t = \cos(\frac{5\pi}{6})$

c.
$$\cos t = \cos(\frac{5\pi}{6})$$

d.
$$\sin t = \sin(\frac{\pi}{8})$$

e.
$$\cos x = 0$$

$$f. \cos x = \frac{1}{2}$$

$$g. \sin t = -\frac{\sqrt{3}}{2}$$

e.
$$\cos x = 0$$

f. $\cos x = \frac{1}{2}$
g. $\sin t = -\frac{\sqrt{3}}{2}$
h. $\cos x = \cos(x + \frac{\pi}{4})$

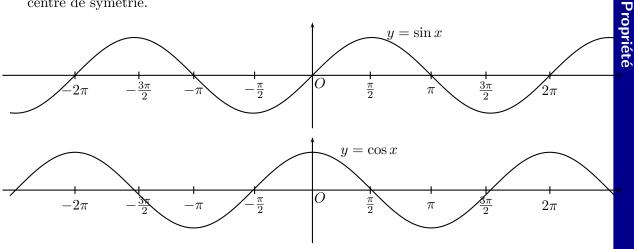
i.
$$\cos x = \sin(\frac{\pi}{3})$$

j.
$$\cos x = \sin(\frac{\pi}{12})$$

k.
$$\sin x = \cos x$$

$$1. \cos(2x) = \sin(\frac{x}{2})$$

- Pour tout réel x, $\cos(x+2\pi) = \cos(x)$ et $\sin(x+2\pi) = \sin(x)$. Les fonctions $x \mapsto \cos(x)$ et $x \mapsto \sin(x)$ sont **périodiques** de période 2π . Les courbes représentatives des fonctions sinus (sinusoïde) et cosinus (cosinusoïde) sont inchangées par translation de vecteur $2\pi i$
- Pour tout réel x, $\cos(-x) = \cos(x)$ La fonction cosinus est paire, sa courbe représentative admet laxe des ordonnées comme axe de symétrie.
- Pour tout réel x, $\sin(-x) = -\sin(x)$ La fonction sinus est **impaire**, sa courbe représentative admet l'origine du repère comme centre de symétrie.



L'évolution de la population P d'animaux dans une forêt est modélisée par :

$$P(t) = 500 + 50\sin(2\pi t - \frac{\pi}{2}),$$

où t est exprimé en années.

- a. Calculer P(0); $P(\frac{1}{2})$ et P(1).
- b. Quelle est la période de la fonction P?
- c. Pour quelle valeur de t, la population est-elle à son maximum la première année? Quelle est la population maximum?

VI Fonctions sinusoïdales : $t \mapsto A\cos(\omega t + \phi)$ et $t \mapsto A\sin(\omega t + \phi)$.

En physique, de nombreux phénomènes sont liés à la propagation donde : le son, la lumière, Les grandeurs associées à ces ondes peuvent être mathématisées par des fonctions sinusoïdales du type : $t \mapsto A\cos(\omega t + \phi)$ et $t \mapsto A\sin(\omega t + \phi)$.

- $\omega t + \phi$ est appelé la **phase instantanée** du signal. Si t = 0, ϕ est appelé la **phase à l'origine** du signal. ω est appelé **la pulsation** du signal.
- La période dune fonction est lintervalle pour lequel la courbe de la fonction se reproduit à lidentique.

Propriété

- L'amplitude des fonctions $t \mapsto A\cos(\omega t + \phi)$ et $t \mapsto A\sin(\omega t + \phi)$ est A.
- La période des fonctions $t \mapsto A\cos(\omega t + \phi)$ et $t \mapsto A\sin(\omega t + \phi)$ est $T = \frac{2\pi}{\omega}$.

Remarque

- En physique, la phase sexprime en radians et la pulsation en radians par seconde.
- En physique, la période sexprime en secondes.

