

Polynôme de degrès 2

I Trinôme du second degré

I.1 Équations du second degré

On appelle trinôme du second degré toute expression de la forme $ax^2 + bx + c$, où a, b et c sont trois nombres réels quelconques, et $a \neq 0$.

Exemple

Quelques trinômes du second degré :

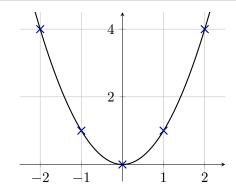
Trinômes	a =	b =	c =
$P(x) = 3x^2 + 2x - 5$	a=3	b=2	c = -5
$Q(x) = \sqrt{2}x^2 - 3x + \frac{2}{3}$	$a=\sqrt{2}$	b = -3	$c = \frac{2}{3}$
$R(x) = -x^2 + \frac{5}{2}x$	a = -1	$b = \frac{5}{2}$	c = 0
$S(x) = 3x^2 - (1 - \sqrt{2})x - \pi$	a=3	$b = -(1 - \sqrt{2})$	$c = -\pi$
$T(x) = \frac{6}{5}x^2 - 3$	$a = \frac{6}{5}$	b = 0	c = -3
$U(x) = (x-2)^2 + 3(x+3)$	$a = \dots$	$b = \dots$	$c = \dots$

I.2 Représentation graphique

La représentation graphique d'une fonction polynôme de degré 2 sappelle une **parabole**.

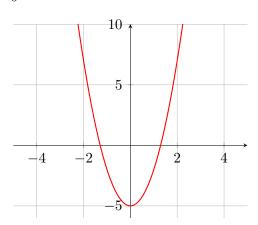
Soit f une fonction polynôme du second degré, telle que $f(x) = ax^2 + b$.

- ullet Si a est positif, f est dabord décroissante, puis croissante (forme de cuvette).
- Si a est négatif, f est dabord croissante, puis décroissante (colline).

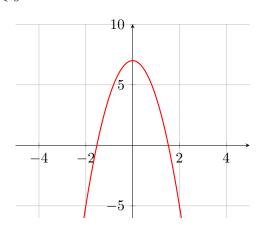


Exemple

a > 0



a < 0



La fonction f telle que $f(x) = -3x^2 + 7$ a pour représentation graphique une parabole dont les branches sont tournées vers le bas et dont le sommet est le point S(0;7). Laxe de symétrie de la parabole est laxe des ordonnées.

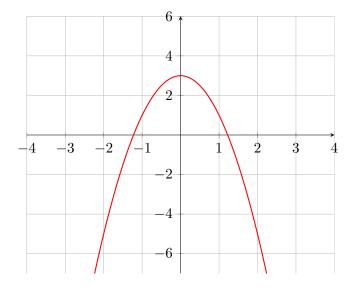
opriété

Les paraboles déquation $y = ax^2 + b$ a pour axe de symétrie laxe des ordonnées et pour sommet le point de coordonnées (0;b).

Exemple

Déterminer graphiquement lexpression dune fonction à partir de sa représentation graphique :

- a. La courbe est une parabole et a pour axe de symétrie laxe des ordonnées, donc f est de la forme : $f(x) = ax^2 + b$.
- b. Le sommet de la parabole a pour coordonnées (0;3), donc : $f(x) = ax^2 + 3$
- c. On lit graphiquement : f(1) = 1. Donc $1 = a \times 1^2 + 3$
- d. Finalement $y = -2x^2 + 3$



Les fonctions définies sur \mathbb{R} par $f(x) = a(x-x_1)(x-x_2)$ sont des fonctions polynômes du second

Les coefficients a, x_1 et x_2 sont des réels avec $a \neq 0$.

Écrire les fonctions polynomiales du second degré suivantes sous la forme ax^2+bx+c : a. f(x)=2(x-2)(x+2) b. g(x)=3(x-5)(x+1)

a.
$$f(x) = 2(x-2)(x+2)$$

b.
$$g(x) = 3(x-5)(x+1)$$

Exemple

Représenter graphiquement une fonction du second degré à partir de sa forme factorisée. On considère la fonction f définie sur \mathbb{R} par f(x) = 2(x-2)(x+4).

Déterminer :

- a. lintersection de la courbe de f avec laxe des abscisses,
- b. son axe de symétrie,
- c. les coordonnées de son extremum. Placer au fur et à mesure ces éléments géométriques dans un repère puis tracer la parabole représentant la fonction f.

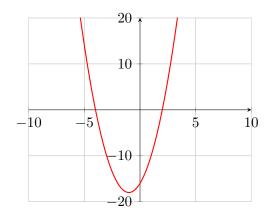
Soit la fonction f définie sur \mathbb{R} par $f(x) = a(x - x_1)(x - x_2)$.

- L'équation f(x) = 0 possède deux solutions (éventuellement égales) : $x = x_1$ et $x = x_2$ appelées les racines de la fonction polynôme f.
- La droite d'équation x=p avec $p=\frac{x_1+x_2}{2}$ est laxe de symétrie de la parabole représentant la fonction f.

Exemple

En reprenant la fonction f définie sur \mathbb{R} par f(x) = 2(x-2)(x+4):

- Les racines de ce polynôme sont $x_1 = 2$ et $x_2 = -4$.
- On en déduit $p = \frac{2-4}{2} = -1$ Donc la droite déquation x = 1 est laxe de symétrie de la parabole représentant la fonction f. On peut tracer cette droite dans le repère.
- Le sommet S de la parabole se trouve sur laxe de symétrie, donc il a pour abscisse p = 1 et pour ordonnées : f(-1) = 2(-1-2)(-1+4) = -18. On peut alors placer le point S dans le repère.
- Dans l'expression de f(x), on a a=2 donc a>0. La parabole est donc décroissante sur l'intervalle $]-\infty;-1]$, puis croissante sur l'intervalle $[-1;+\infty[$. On obtient donc la courbe suivante :



Exemple

Comment factoriser une expression du second degré?

Soit $f(x) = 2x^2 + 4x - 6$. En vous aidant d'une racine évidente de la fonction f, factoriser l'expression de la fonction.

Signe d'une fonction polynôme de degré 2III

Exemple

Étudier le signe de la fonction f définie sur $\mathbb R$ par f(x)=-2(x-3)(x+2)Le signe de f dépend du signe de chaque facteur. On utilise donc un tableau de signe.

	x	$-\infty$		-2		3		$+\infty$	
	-2		_		_		_		
	(x-3)		_		_	0	+		
	(x+2)		_	0	+		+		
	$\frac{4x+3}{5x+1}$		_	0	+	0	_		
On en déduit que $f(x) \ge 0$ pour $x \in [-2; 3]$ et $f(x) \le 0$ pour $x \in [-2; 3] \cup [3; +\infty[$.									