

FONCTIONS EXPONENTIELLES

La fonction exponentielle joue un rôle fondamental en mathématiques. Elle permet de généraliser la notion de puissance à des exposants réels non entiers. Elle modélise l'évolution au cours du temps de quantités ayant des accroissements constants en pourcentage : c'est ce qu'on nomme une croissance exponentielle. On la retrouve comme solution de nombreux problèmes, tant en physique qu'en chimie ou en économie.

I Définition

On considère la suite géométrique $(a^n)_{n\in\mathbb{N}}$ de raison a>0.

En prolongeant son ensemble de définition à $[0; +\infty[$, on définit la fonction exponentielle de base a.

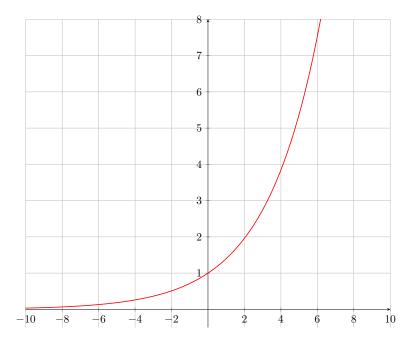
On étend la fonction exponentielle de base a aux nombres réels négatifs en posant $a^{-x} = \frac{1}{a^x}$ pour tout nombre réel positif x.

Finalement, la fonction $x \mapsto a^x$ définie sur \mathbb{R} , avec a > 0, s'appelle fonction exponentielle de base a.

- On dit que l'on est passé du discret (suites géométriques) au continu (fonctions exponentielles).
- Si a=1 alors $f(x)=1^x=1$ f est une fonction constante.
- Comme a > 0 alors $\forall x \in \mathbb{R}, f(x) > 0$.
- $a^0 = 1$ et $a^0 = 1$.

Exemple

On a représenté ci-dessous en rouge la fonction exponentielle de base 1,4 :



Soit a un réel strictement positif, pour tous réels x et y et tout entier relatif n:

- \bullet $a^{x+y} = a^x \times a^y$
- $\bullet \ a^{x-y} = \frac{a^x}{a^y}$
- $a^{nx} = (a^n)^x = (a^x)^n$

Exemple

a.
$$A = 4^{-3} \times 4^{-5} = 4^{-3-5} = 4^{-8}$$

b.
$$B = \frac{3^3 \times 3^{-2,5}}{9^5} = \frac{3^3 \times 3^{-2,5}}{(3^2)^5} = \frac{3^3 \times 3^{-2,5}}{3^{2 \times 5}} = \frac{3^{3-2,5}}{3^{10}} = 3^{0,5-10} = 3^{-9,5}$$

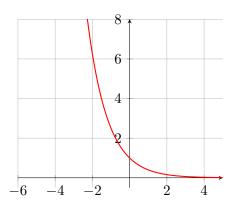
\mathbf{II} Variations de la fonction exponentielle

Soit a un réel strictement positif.

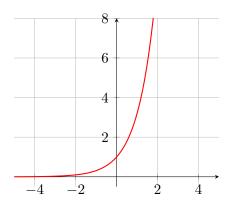
- Si 0 < a < 1, la fonction $x \longmapsto a^x$ est strictement décroissante sur \mathbb{R} .
- Si a=1, la fonction $x \mapsto 1^x$ est la fonction constante égale à 1.
- a > 1, la fonction $x \mapsto a^x$ est strictement croissante sur \mathbb{R} .

Exemple

exponentielle de base 0,4:



On a représenté ci-dessous en rouge la fonction On a représenté ci-dessous en rouge la fonction exponentielle de base 3,2 :



Soit a un réel strictement positif et k un réel non nul.

- Si k > 0, la fonction $x \longmapsto k \times a^x$ a le même sens de variation que la fonction $x \longmapsto a^x$.
- Si k < 0, la fonction $x \longmapsto k \times a^x$ a le sens de variation contraire de la fonction $x \longmapsto a^x$.

Exemple

- La fonction $x \mapsto 4 \times 6^x$ est strictement croissante car 4 > 0 et $x \mapsto 6^x$ est strictement croissante.
- La fonction $x \mapsto 5 \times 0.4^x$ est strictement décroissante car 5>0 et $x \mapsto 0.4^x$ est strictement décroissante.
- La fonction $x \mapsto -3 \times 7^x$ est strictement décroissante car -3 < 0 et $x \mapsto 7^x$ est strictement croissante. (Une fonction croissante conserve l'ordre).
- La fonction $x \mapsto -2 \times 0.8^x$ est strictement croissante car -2 < 0 et $x \mapsto 0.8^x$ est strictement décroissante. (Une fonction décroissante inverse l'ordre).

III Taux d'évolution moyen

1

On appelle taux moyen d'évolution t_m le réel C^{n-1} où C est le coefficient multiplicateur global sur n évolutions.

- Si t_M est positif l'évolution correspond à une augmentation.
- $\bullet\,$ Si t_M est négatif l'évolution correspond à une réduction (ou diminution).

Exemple

Le chiffre d'affaires d'une entreprise est passé en 1 an de 100~000 e à 130~000 e. Déterminer le taux d'évolution mensuel.