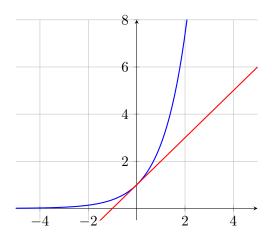
EXPONENTIELLE DE BASE E

Définition de la fonction exponentielle de base e Ι

Parmi toutes les fonctions $x \mapsto a^x$ il en existe une seule dont la tangente à la courbe représentative au point (0;1) a pour coefficient directeur 1.



Cette fonction est la fonction exponentielle de base e, noté exp, telle que pour tout réel x, on a $\exp: x \longmapsto e^x$

Le réel $e = e^1$ est environ égal à 2,718.

On verra que la fonction exponentielle est croissante. Mais sa croissance est très rapide, ainsi e^7 dépasse 1000, e^{14} dépasse le million et e^{21} dépasse le milliard.

Remarque

Valeurs particulières à connaître : $e^0 = 1$ et $e^1 = e$.

$$e^0 = 1$$
 et $e^1 = e$.

Étude de la fonction exponentielle

Dérivabilité:

La fonction exponentielle est dérivable sur \mathbb{R} et $(e^x)' = e^x$

$$\lim_{x \to +\infty} e^x = +\infty \quad \text{et} \quad \lim_{x \to -\infty} e^x = 0$$

Variations:

La fonction exponentielle est strictement croissante sur \mathbb{R} .

Exemple

Dériver les fonctions suivantes :

a.
$$f(x) = 4x - 3e^x$$

a.
$$f(x) = 4x - 3e^x$$
 b. $g(x) = (x - 1)e^x$

$$c. h(x) = \frac{e^x}{x}$$

Pour tous réels x et y on a :

•
$$e^{x+y} = e^x \times e^y$$
 • $e^{x-y} = \frac{e^x}{e^y}$

$$e^{x-y} = \frac{e^x}{e^y}$$

$$\bullet \ e^{-x} = \frac{1}{e^x}$$

•
$$(e^x)^n = e^{nx}$$

avec $n \in \mathbb{N}$

Exemple

Simplifier les écritures suivantes :

•
$$A = \frac{e^7 \times e^{-4}}{e^{-5}}$$

•
$$C = \frac{1}{(e^{-3})^2} + \frac{(e^4)^{-1}}{e^2 \times e^{-6}}$$

•
$$B = (e^5)^{-6} \times e^{-3}$$

•
$$D = \frac{(e^{2x})^3}{e^{3x+1} \times e^{-x-1}}$$

Pour tous réels a et b, on a :

•
$$e^a = e^b \iff a = b$$

•
$$e^a < e^b \iff a < b$$

Exemple

Résoudre une équation ou une inéquation :

a. Résoudre dans
$$\mathbb{R}$$
 l'équation $e^{x^2-3}-e^{-2x^2}=0$

b. Résoudre dans
$$\mathbb R$$
 l'inéquation $e^{4x-1} \geq 1$

Exemple

Étudier une fonction exponentielle:

Soit f la fonction définie sur \mathbb{R} par $f(x) = (x+1)e^x$.

a. Calculer la dérivée de la fonction f.

b. Dresser le tableau de variations de la fonction f.

c. Déterminer une équation de la tangente à la courbe au point d'abscisse 0

d. Tracer la courbe représentative de la fonction f en s'aidant de la calculatrice.

Fonctions de la forme $x \longmapsto e^{kx}$ III

III.1 <u>Variations</u>

La fonction $x \longmapsto e^{kx}$, avec $k \in \mathbb{R}$ est dérivable sur \mathbb{R} . Sa dérivée est la fonction $x \longmapsto ke^{kx}$.

• Si k > 0: la fonction $x \mapsto e^{kx}$ est croissante.

• Si k < 0: la fonction $x \mapsto e^{kx}$ est décroissante.

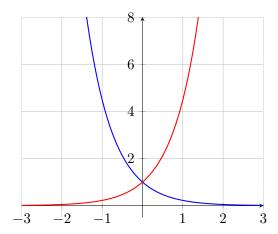
Il vous faudra démontrer les propriétés ci-dessus.

Soit f la fonction définie sur \mathbb{R} par $f(x) = xe^{-3x}$.

- a. Calculer la dérivée de la fonction f.
- b. En déduire les variations de la fonction f.

III.2 Limites

- Si k > 0: $\lim_{x \to +\infty} e^{kx} = +\infty$ et $\lim_{x \to -\infty} e^{kx} = 0$ Si k < 0: $\lim_{x \to +\infty} e^{kx} = 0$ et $\lim_{x \to -\infty} e^{kx} = +\infty$



Exemple

Suite à une infection, le nombre de bactéries contenues dans un organisme en fonction du temps (en heures) peut être modélisé par la fonction f définie sur [0;10] et telle que f'(t)=0.14f(t).

- a. Montrer que la fonction f définie sur [0; 10] par $f(t) = Ae^{0.14t}$ convient.
- b. On suppose que f(0) = 50000. Déterminer A.
- c. Déterminer les variations de f sur [0; 10]
- d. (a) À l'aide de la calculatrice, donner un arrondi au millier près du nombre de bactéries après 3h puis 5h30.
 - (b) À l'aide de la calculatrice, déterminer au bout de combien de temps le nombre de bactéries a-t-il doublé. Arrondir à l'heure près.

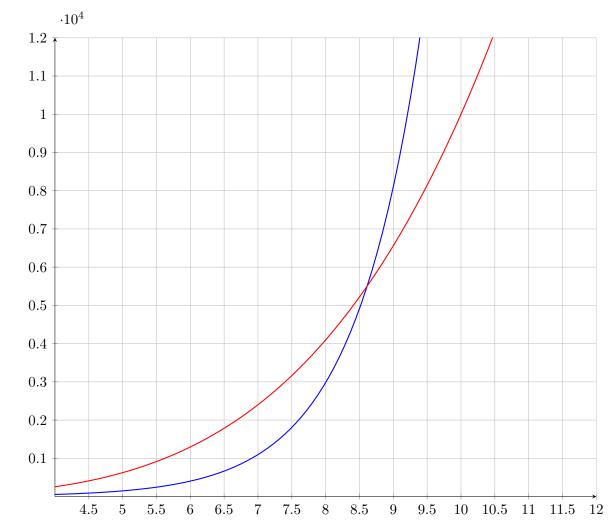
Croissances comparées des fonctions exponentielles et puissances

Croissances comparées :

Pour tout entier n, $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$ et $\lim_{x \to +\infty} x^n \times e^{-x} = 0$ Dans le cas de limites infinies, la fonction exponentielle impose sa limite devant les fonctions puissances. Sa croissance est plus rapide.

Exemple

On a tracé en bleu $x \longmapsto e^x$ et en rouge $x \longmapsto x^4$



Exemple

Déterminer les limites suivantes :

a.
$$\lim_{x \to +\infty} \frac{e^x}{x^2}$$

b.
$$\lim_{x \to +\infty} \frac{x^3}{e^x}$$

b.
$$\lim_{x \to +\infty} \frac{x^3}{e^x}$$
 c. $\lim_{x \to +\infty} x^2 \times e^{-x} + \frac{1}{e^{2x}}$