

## **Exercices**

# Nombres complexes

#### Exercice 1/34

On pose  $z_1 = -2 + 3i$  et  $z_2 = 5 + 4i$ .

Écrire sous forme algébrique les nombres complexes  $z_1 + z_2$  et  $z_1z_2$ .

Exercice 2/34

Écrire sous forme algébrique les nombres complexes suivants.

1. i - (2 + 3i)

2. (4+i)(-5+2i)

3. 2(6-5i)-3(4+2i)

4.  $(5+3i)^2$ 

5. (5+3i)(5-3i)

6.  $(1-i)^2$ 

7. (i+1)(i-1)+2

8.  $2 + i\sqrt{3} + \left(\frac{1}{2} + 3i\right)^2$ 

### Exercice 3/34

On pose  $z_1 = 1 - 2i$  et  $z_2 = 3 + i$ .

Écrire sous forme algébrique les nombres complexes  $\frac{1}{z_1}$  et  $\frac{z_1}{z_2}$ .

Exercice 4/34

Écrire sous forme algébrique les nombres complexes suivants.

1.  $\frac{1}{i}$ 

2.  $\frac{1}{1-i}$ 

3.  $\frac{1}{3-4i}$ 

 $4. \ \frac{i}{-2+i}$ 

 $5. \ \frac{3-2i}{i}$ 

6.  $\frac{3+5i}{5-3i}$ 7.  $\frac{1}{(3-i)(-1+2i)}$ 

8.  $\frac{1-3i}{(-1+2i)(1-i)}$ 

### Exercice 5/34

Soit a et b deux réels. On pose  $z_1 = a + 3i - i(b - 2i)$  et  $z_2 = 3 + i$ .

A quelle(s) condition(s) sur a et b les nombres complexes  $z_1$  et  $z_2$  sont-ils égaux?

#### Exercice 6/34

Déterminer, sous forme algébrique, le conjugué de chacun des nombres complexes suivants.

1. 
$$z_1 = 3 - 11i$$

4. 
$$z_4 = (3+i)(-11-2i)$$

2. 
$$z_2 = 8i$$

5. 
$$z_5 = (1 - 2i)^2$$

3. 
$$z_3 = 2i - 7$$

6. 
$$z_6 = \frac{2 - 3i}{8 + 6i}$$

#### Exercice 7/34

Soit z un nombre complexe, on pose  $Z=z^2+\overline{z}^2$ . Montrer que Z est un nombre réel.

#### Exercice 8/34

Soit z un nombre complexe, on pose  $Z=z^2-\overline{z}^2.$ Montrer que Z est un imaginaire pur.

#### Exercice 9/34

On considère les nombres complexes  $z_1 = \frac{3-i}{5+7i}$  et  $z_2 = \frac{3+i}{5-7i}$ .

- 1. Vérifier que  $z_1 = \overline{z_2}$ .
- 2. En déduire que  $z_1+z_2$  est réel, que  $z_1-z_2$  est imaginaire pur et les calculer.

### Exercice 10/34

On pose  $j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ .

- 1. Calculer  $j^2$ .
- 2. En déduire les relations  $1+j+j^2=0,\ j^3=1,\ \frac{1}{j}=j^2=\overline{j}.$

### Exercice 11/34: \*

On considère la somme S définie par

$$S = 1 + i + i^2 + i^3 + \dots + i^{2020}.$$

- 1. Calculer  $i^3$ ,  $i^4$ ,  $i^5$  et  $i^6$ .
- 2. Déterminer, selon les valeurs de  $n \in \mathbb{N}$ , la valeur de  $i^n$ .
- 3. Calculer la valeur de la somme S.

### Exercice 12/34

Pour  $a, b \in \mathbb{R}$ , on pose z = (2a - b - i(a + b))(-a - i(a + b)).

A quelle(s) condition(s) sur a et b le nombre complexe z est-il réel?

#### Exercice 13/34

On pose Z=1+iz, où  $z\in\mathbb{C}.$  Démontrer que :

Z est réel  $\iff$  z est imaginaire pur.

### Exercice 14/34: \*

Soit z un nombre complexe différent de i, on pose  $Z=\frac{z}{z-i}$ . A quelle condition sur z le nombre complexe Z est-il un réel ?

### Exercice 15/34

Résoudre dans  $\mathbb{C}$  l'équation  $2z - (1+i)\overline{z} = 3 + 5i$ .

#### Exercice 16/34

Résoudre dans  $\mathbb{C}$  l'équation (1+2i)z = -1+3i.

#### Exercice 17/34

Résoudre dans  $\mathbb{C}$  l'équation  $3\overline{z} = 4 - i$ .

#### Exercice 18/34

Résoudre dans  $\mathbb C$  les équations suivantes.

1. 
$$(7-i)z = 2$$

2. 
$$iz + 2i - 3 = 0$$

3. 
$$(3+5i)z = 1-z$$

4. 
$$\frac{z+1}{z-1} = 2i$$

$$5. \ 5\overline{z} = 3 - i$$

6. 
$$(1+i)\overline{z} + 1 - i = 0$$

### Exercice 19/34

Résoudre dans  $\mathbb{C}$  l'équation  $3\overline{z} - 2iz = 5 - 3i$ .

### Exercice 20/34: \*

Résoudre dans  $\mathbb C$  l'équation  $z^2 - 3\overline{z} + 2 = 0$ .

### Exercice 21/34: \*\*

Résoudre dans  $\mathbb C$  l'équation  $z^2=4i$ .

### Exercice 22/34

Soit a et b deux nombres complexes. Écrire le développement de  $(a+b)^5$ .

25/08/2025  $\mathbf{T^{le}~exp}$ 

#### Exercice 23/34

Montrer que  $(1+\sqrt{3})^4+(1-\sqrt{3})^4$  est un entier naturel.

#### Exercice 24/34

Développer les expressions suivantes.

- 1.  $(1+z)^6$  où  $z \in \mathbb{C}$
- 2.  $(1-z)^6$  où  $z \in \mathbb{C}$
- 3.  $(1+i)^5$

#### Exercice 25/34

Soit  $x \in \mathbb{R}_+$ . Sans effectuer de récurrence, montrer que :

$$\forall n \in \mathbb{N}, \ (1+x)^n \ge 1 + nx$$

#### Exercice 26/34: \*

Pour 
$$n \in \mathbb{N}^*$$
, on pose  $S_n = \sum_{\substack{0 \le k \le n \\ \text{k pair}}} \binom{n}{k}$  et  $T_n = \sum_{\substack{0 \le k \le n \\ \text{k impair}}} \binom{n}{k}$ 

Calculer  $S_n + T_n$  et  $S_n - T_n$ . En déduire la valeur des sommes  $S_n$  et  $T_n$ .

#### Exercice 27/34: \*\*

Démontrer que, pour tout  $n \in \mathbb{N}$ ,  $3^{2n+1} + 2^{4n+2}$  est un multiple de 7.

#### Exercice 28/34: \*\*

Pour  $n \in \mathbb{N}$ , on pose  $S_n = \sum_{k=0}^n \binom{2n+1}{k}$ .

- 1. Montrer que  $S_n = \sum_{k=n+1}^{2n+1} {2n+1 \choose k}$ .
- 2. En déduire la valeur de  $2S_n$ , puis celle de  $S_n$ .

### Exercice 29/34 : Vrai/Faux

- 1. La partie imaginaire d'un nombre complexe est un réel.
- 2. Le nombre complexe i est égal à sa partie imaginaire.
- 3. Pour  $z, z' \in \mathbb{C}$  on a  $\Re \mathfrak{e}(z+z') = \Re \mathfrak{e}(z) + \Re \mathfrak{e}(z')$ .
- 4. Pour  $z, z' \in \mathbb{C}$  on a  $\Re \mathfrak{e}(z \times z') = \Re \mathfrak{e}(z) \times \Re \mathfrak{e}(z')$ .
- 5. Pour tout nombre complexe z,  $z + \overline{z}$  est un nombre réel.
- 6. Pour tout nombre complexe  $z, z \overline{z}$  est un nombre réel.
- 7. Pour tout nombre complexe z,  $z \times \overline{z}$  est un nombre réel.
- 8. Si z est un nombre complexe tel que  $z + \overline{z} = 0$  alors z = 0.
- 9. Si z est un nombre complexe tel que  $z \times \overline{z} = 0$  alors z = 0.

10. Deux nombres complexes dont la somme et le produit sont réels, sont également réels.

11. Pour 
$$n \in \mathbb{N}^*$$
,  $\sum_{k=1}^n \binom{n}{k} 2^k = 3^n$ 

12. Pour 
$$n \in \mathbb{N}^*$$
,  $\sum_{k=0}^{n} \binom{n}{k} (-1)^k$  est égal à 0.

#### Exercice 30/34: \*\*

A quelles conditions sur a et b réels le nombre complexe

$$(2a - b - i(a + b))(-a - i(a + b))$$

est-il un nombre réel?

# Exercice 31/34: \*\*

Déterminer tous les complexes z tels que  $|z| = |\frac{1}{z}| = |1 - z|$ .

# Exercice 32/34: \*\*

Pour quelles valeurs de n le nombre complexe  $\left(\frac{(1-i\sqrt{3})^5}{(1-i)^3}\right)^n$  est-il un réel positif?

#### Exercice 33/34: \*\*

Si z est un nombre complexe de module différent de 1, et si  $n \in \mathbb{N}^*$ , montrer que

$$\frac{|1-z^n|}{|1-z|} \leq \frac{1-|z|^n}{1-|z|}$$

### Exercice 34/34: \*\*

Si  $a,\ b$  et c sont trois complexes de module 1, démontrer que |ab+ac+bc|=|a+b+c|