Suites numériques

I Rappels et suites arithmétiques

Exemple

On considère 3 nombres consécutifs : -2; 5 et 12.

Dans cet ordre, ces nombres peuvent-ils être les termes consécutifs d'une suite arithmétique? Pour y répondre, il faut s'assurer que la différence entre deux termes consécutifs reste la même.

5-(-2)=7 et 12-5=7 Ce sont donc les termes consécutifs d'une suite arithmétique de raison 7.

On note alors (u_n) cette suite : $u_{n+1} = u_n + 7$

I.1 Formule et récurrence et forme explicite d'une suite arithmétique

Si (u_n) est une suite arithmétique de raison r et de premier terme u_0 , on a :

- $u_{n+1} = u_n + r$ (formule de récurrence)
- $u_n = u_0 + nr$ (forme explicite)

 (u_n) est une suite arithmétique de raison r.

- Si r > 0 alors la suite (u_n) est croissante sur \mathbb{N} .
- Si r < 0 alors la suite (u_n) est décroissante sur \mathbb{N} .

Exemple

Pour préparer une course, un athlète décide de s'entraîner de façon progressive.

Il commence son entraı̂nement au « jour 0 » par un petit footing d'une longueur de 3000 m. Au « jour 1 », il court 3150 m. Au « jour 2 », il court 3300 m puis ainsi de suite en parcourant chaque jour 150 m de plus que la veille.

On note u_n la distance par courue au « jour n » d'entraı̂nement.

- a. Calculer u_3 et u_4
- b. Quelle est la nature de la suite (u_n) ? On donnera son premier terme et sa raison.
- c. Exprimer u_{n+1} en fonction de u_n
- d. Donner la variation de la suite (u_n)
- e. Exprimer u_n en fonction de n.

opriete

Propriet

$$\begin{cases} u_0 = 7 \\ u_{n+1} = u_n - 4 \end{cases}$$

b. Déterminer l'expression, en fonction de n, de la suite arithmétique définie par :

$$\begin{cases} u_1 = 5 \\ u_{n+1} = u_n + 3 \end{cases}$$

Pour une suite dont le premier terme est u_1 , on utilisera la forme explicite suivante : $u_n = u_1 + (n-1)r$.

Exemple

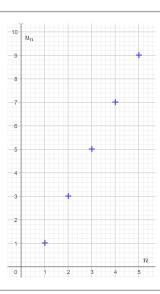
Étudier les variations sur \mathbb{N} des suites arithmétiques (u_n) et (v_n) définies par :

a.
$$u_n = 3 + 5n$$

b.
$$\begin{cases} v_0 = -3 \\ v_{n+1} = v_n - 4 \end{cases}$$

Les points de la représentation graphique d'une suite arithmétique sont alignés.

Ci-contre, la suite arithmétique de premier terme $u_1=1$ et de raison r=2.



Propriété

I.2 Somme des termes d'une suite arithmétique

La somme des n+1 premiers termes consécutifs d'une suite arithmétique (u_n) de premier terme u_0 , s'obtient avec la formule suivante :

$$S = (n+1) \times \frac{u_0 + u_n}{2}$$

$$S = u_0 + u_1 + \dots + u_n$$

Exemple

En reprenant l'exemple précédent, répondre aux questions suivantes :

- a. Quelle distance aura-t-il parcourue au total lorsqu'il sera au « jour 15 » de son entraı̂nement?
- b. Quelle distance aura-t-il parcourue au total entre le « jour 8 » et le « jour 12 » ?

I.3 Moyenne arithmétique de deux nombres

En mathématiques, la moyenne arithmétique d'une liste de nombres est la somme des valeurs divisée par le nombre de valeurs.

Exemple

- a. Calculer la moyenne arithmétique des nombres -3 et 19
- b. Peut-on affirmer que chaque terme d'une suite arithmétique est la moyenne arithmétique du terme qui le précède et du terme qui le suit.

II Rappels et suites géométriques

Exemple

On considère la liste des trois nombres suivants : 4, 12 et 36.

Dans cet ordre, ces nombres peuvent-ils être les termes consécutifs d'une suite géométrique? Pour y répondre, il faut s'assurer que le quotient entre deux termes consécutifs reste le même.

$$\frac{12}{4} = 3$$

$$\frac{36}{12} = 3$$

 $\frac{1}{12}$ — 3 Ce sont donc les termes d'une suite géométrique de raison 3.

On note cette suite (u_n) , on a alors : $u_{n+1} = 3u_n$

II.1 Formule et récurrence et forme explicite d'une suite géométrique

Si (u_n) est une suite géométrique de raison q et de premier terme u_0 , on a :

- $u_{n+1} = q \times u_n$ (formule de récurrence)
- $u_n = u_0 \times q^n$ (forme explicite)

 (u_n) est une suite géométrique de raison q et de premier terme u_0 strictement positif.

- Si q > 1 alors la suite (u_n) est croissante sur \mathbb{N} .
- Si 0 < q < 1 alors la suite (u_n) est décroissante sur \mathbb{N} .
- Si q = 1 alors la suite (u_n) est constante sur \mathbb{N} .

Exemple

On place un capital de $500 \in \text{sur}$ un compte dont les intérêts annuels s'élèvent à 4% par an. On note u_n la valeur du capital après n années.

- a. Calculer u_1 et u_2 .
- b. Quelle est la nature de la suite (u_n) ? On donnera son premier terme et sa raison.

3

- c. Exprimer u_{n+1} en fonction de u_n
- d. Donner la variation de la suite (u_n)
- e. Exprimer u_n en fonction de n

Propriete

$$\begin{cases} u_0 = 3 \\ u_{n+1} = 4i \end{cases}$$

b. Déterminer l'expression, en fonction de n, de la suite géométrique définie par : $\left\{ \begin{array}{c} u_1=5 \\ u_{n+1}=2u_n \end{array} \right.$

$$\begin{cases} u_1 = 5 \\ u_{n+1} = 2u_r \end{cases}$$

Pour une suite dont le premier terme est u_1 , on utilisera la forme explicite suivante : $u_n = u_1 \times q^{n-1}$.

Exemple

Déterminer le sens de variation des suites géométriques (u_n) et (v_n) définies par :

a.
$$u_n = 4 \times 2^n$$

b.
$$\begin{cases} v_0 = 2 \\ v_{n+1} = \frac{1}{2}u_n \end{cases}$$

II.2Somme des termes d'une suite géométrique

La somme des n+1 premiers termes consécutifs d'une suite géométrique (u_n) de premier terme u_0 et de raison q, est donnée par la formule suivante :

$$S = u_0 \times \frac{1 - q^{n+1}}{1 - q}$$

$$S = u_0 + u_1 + \dots + u_n$$

Exemple

On considère la suite géométrique (u_n) de raison q=2 et de premier terme $u_0=5$.

- a. Exprimer u_n en fonction de n
- b. Calculer la somme : $S = \sum_{k=5}^{20} u_k$
- c. Chaque début d'année, on place un capital de 500 € sur un même compte à un taux annuel de 3\%. Calculer la valeur totale disponible sur le compte après 7 ans.

II.3Moyenne géométrique de deux nombres

La moyenne géométrique de deux nombres a et b positifs est égale à \sqrt{ab}

ullet La moyenne géométrique de deux nombres a et b positifs est un nombre c tel que :

$$\frac{a}{c} = \frac{c}{b}$$

• On constate ainsi que pour une suite géométrique chaque terme est la moyenne géométrique du terme qui le précède et du terme qui le suit. Pour une suite géométrique de terme u_n on a en effet:

$$\frac{u_{n-1}}{u_n} = \frac{u_n}{u_{n+1}}$$

Exemple

- a. Calculer la moyenne géométrique de 4 et 9.
- b. On considère la suite géométrique (u_n) de premier terme $u_0 = 2$ telle que la moyenne géométrique de u_0 et u_2 soit égale à 10. Quelle est la raison de la suite (u_n) ?

II.4 Exercice : comparaison de suites

Une banque propose deux options de placement :

- Placement A : On dépose un capital de départ. Chaque année, la banque nous reverse 6% du capital de départ.
- Placement B : On dépose un capital de départ. Chaque année, la banque nous reverse 4% du capital de l'année précédente.

On suppose que le placement initial est de $200 \in$.

L'objectif est de savoir à partir de combien d'années un placement est plus intéressant que l'autre. On note u_n la valeur du capital après n années pour le placement A et v_n la valeur du capital après n années pour le placement B.

- a. (a) Calculer u_1 , u_2 et u_3
 - (b) Calculer v_1 , v_2 et v-3
- b. Quelle est la nature des suites (u_n) et (v_n) ? On donnera le premier terme et la raison.
- c. Exprimer u_n et v_n en fonction de n.
- d. Déterminer le plus petit entier n tel que $u_n < v_n$. Interpréter ce résultat.