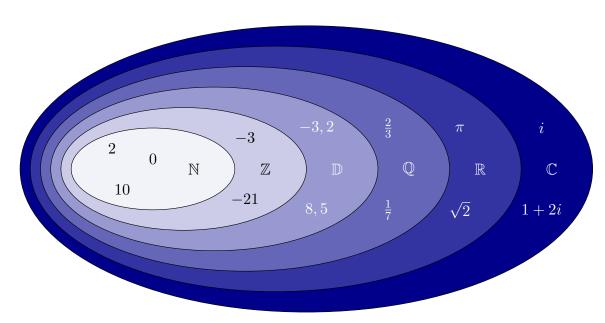
Nombres complexes

T Découverte de l'ensemble C

Il existe un ensemble de nombre, noté C, appelé ensemble des nombres complexes qui possède les propriétés suivantes :

- \mathbb{C} contient \mathbb{R} .
- Dans C, on définit une multiplication et une addition qui suivent les mêmes règles de calcul que dans \mathbb{R} .
- Dans cet ensemble \mathbb{C} , il existe un nombre noté i, tel que $i^2 = -1$.
- Tout élément $z \in \mathbb{C}$ s'écrit de manière **unique** z = a + ib avec a et b réels.

$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$



- On appelle forme algébrique d'un nombre complexe z l'écriture z = a + ib avec a et b réels.
- Soit un nombre complexe z = a + ib, on appelle nombre complexe conjugué de z, le nombre noté \overline{z} , tel que $\overline{z} = a - ib$.
- \bullet Le nombre a s'appelle la partie réelle et la nombre b s'appelle la partie imaginaire. On note : $\mathfrak{Re}(z) = a$ et $\mathfrak{Im}(z) = b$
- Si l'on additionne un nombre complexe et son conjugué, on obtient le double de sa partie réelle : $z + \overline{z} = 2a$

Exemple

Voici quelques exemples de nombres complexes :

- z = 2 + 3i la partie réelle est a = 2 et la partie imaginaire b = 3.
- z = 1 i la partie réelle est a = 1 et la partie imaginaire b = -1.
- z=2 est un réel et z=2i est un imaginaire pur.

Exercice : Donner la forme algébrique des nombres complexes suivants :

a.
$$z_1 = 3-5i-(3i-4)$$

c.
$$z_3 = (2-3i)^2$$

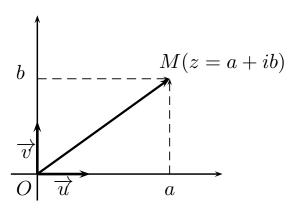
b.
$$z_2 = (3-2i)(-1+5i)$$

d.
$$z_4 = \frac{1+i}{2-i}$$

II Découverte du plan complexe

Le plan est rapporté à un repère orthonormal $(O; \overrightarrow{u}, \overrightarrow{v})$ direct.

- À tout nombre complexe z = a + ib avec $a \in \mathbb{R}$ et $b \in \mathbb{R}$, on associe son **image**, le point M de coordonnées (a;b) et tout vecteur $\overrightarrow{w}(a;b)$.
- À tout point M(a;b) avec $a \in \mathbb{R}$ et $b \in \mathbb{R}$, et à tout vecteur $\overrightarrow{w}(a;b)$, on associe le nombre complexe z = a + ib appelé **affixe** du point M et **affixe** du vecteur \overrightarrow{w} .



${\bf Exercice}: {\bf plan}\ {\bf complexe}$

Placer les points A, B et C d'affixe respectif : $z_A = -1 - 2i$, $z_B = 4 - i$ et $z_C = 6 + \frac{1}{2}i$ dans un repère orthonormal $(O; \overrightarrow{u}, \overrightarrow{v})$. Placer ensuite $\overline{z_A}$, $\overline{z_B}$ et $\overline{z_C}$.

finition

Les nombres réels sont les affixes des points de l'axe des abscisses, que l'on appelle donc **axe réel**.

Un nombre complexe dont la partie réelle est nulle, z = 0 + iy = iy est appelé un nombre **imaginaire pur**. Les images de ces nombres sont les points de l'axe des ordonnées, que l'on appelle donc axe **imaginaire (pur)**.

$$\bullet \ \overline{z+z'} = \overline{z} + \overline{z'}$$

$$\bullet \ \overline{z \times z'} = \overline{z} \times \overline{z'}$$

•
$$\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}} \text{ avec } z' \neq 0.$$

• Soit
$$z = a + ib$$
 alors $z\overline{z} = a^2 + b^2$.

IIIExercices

Les règles de calcul sur les nombres réels s'étendent aux nombres complexes.

Exercice 1

Exprimer sous forme algébrique les nombres complexes, puis refaire l'exercice avec les conjugués de ces nombres.

•
$$(2+3i) + (-1+6i)$$
 • $(5+i) - (3-2i)$ • $(1+i)(3-2i)$ • $(4+i)(-5+3i)$

•
$$(5+i)-(3-2i)$$

•
$$(1+i)(3-2i)$$

•
$$(4+i)(-5+3i)$$

•
$$(2-i)^2$$

•
$$(2-i)^2$$
 • $(x+iy)(x'+iy')$ • $(x+iy)^2$ • $(2-3i)(2+3i)$ • $(a+ib)(a-ib)$

$$(x+iy)^2$$

•
$$(2-3i)(2+3i)$$

•
$$(a+ib)(a-ib)$$

Exercice 2

Les points A, B et C ont pour affixe respective -2 + i, 3 + 3i, $1 + \frac{11}{5}i$.

- a. Calculer les affixes des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- b. En déduire que les points A, B et C sont alignés.
- c. Placer les points A, B et C.

Exercice 3

Les points A, B et C ont pour affixe respective $1 + \frac{1}{2}i, \frac{3}{2} + 2i$ et $-1 - \frac{11}{2}i$.

Montrer que les points A, B et C sont alignés.

Exercice 4

On considère dans le plan complexe les points A, B, C et D d'affixe $z_A = 3 + i$, $z_B = 2 - 2i$, $z_C = 2i \text{ et } z_D = 1 + 5i.$

- a. Faire une figure
- b. Montrer que ABCD est un parallélogramme.

Exercice 5

Écrire sous forme algébrique les nombres complexes :

$$\bullet \ \frac{1}{\sqrt{3}+2i}$$

$$\bullet \ \frac{1+4i}{1-\sqrt{2}i}$$

•
$$\frac{1}{\sqrt{3}+2i}$$
 • $\frac{1+4i}{1-\sqrt{2}i}$ • $2+i\sqrt{3}(5-i)+\frac{1}{2}+3i^2$ • i^3 • i^4 • i^5 • i^6

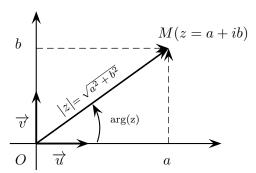
Exercice 6

À propos de j.

- a. Donner la forme algébrique de : i^{12} ; i^{2012} ; i^{37} ; i^{-13}
- b. Calculer la somme : $S=1+i+i^2+\cdots+i^{2014}$
- c. On pose $j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$. Calculer $1 + j + j^2$.

Soit dans le plan complexe un point M d'affixe $z=a+ib, a \in \mathbb{R}, b \in \mathbb{R}$.

- On appelle module de z le nombre réel positif $\sqrt{a^2 + b^2}$ noté |z|. Cette valeur est égale à la distance OM.
- On appelle **argument** du nombre complexe non nul z, noté arg(z), toute mesure en radians de l'angle orienté : $(\overrightarrow{u}, \overrightarrow{OM})$.



Remarque

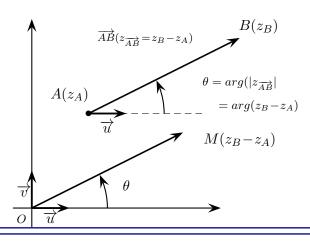
Un nombre complexe non nul z a une infinité d'arguments : si θ est un de ces argument, alors tous les autres sont de la forme $\theta + k2\pi$, $k \in \mathbb{Z}$.

On note $arg(z) = \theta$ (modulo 2π), ou $arg(z) = \theta$ [2π], ou encore, pour simplifier (mais alors par abus de langage), $arg(z) = \theta$.

Soit $A(z_A)$ et $B(z_B)$, alors $\overrightarrow{AB}(z_B - z_A)$ et donc,

- $AB = \|\overrightarrow{AB}\| = |z_B z_a|$
- $(\overrightarrow{u}, \overrightarrow{AB}) = arg(z_{\overrightarrow{AB}}) = arg(z_B z_A).$

ropriété



priété

Pour tout nombres complexes z et z':

- si z = x + iy, $x \in \mathbb{R}$ et $y \in \mathbb{R}$, $z\overline{z} = |z|^2 = x^2 + y^2$
- |-z| = |z| et $|\overline{z}| = |z|$
- |zz'| = |z| |z'| et $|z^n| = |z|^n$ et $\frac{|z|}{|z'|} = \frac{z}{z'}$
- $|z + z'| \le |z| + |z'|$ (inégalité triangulaire)

Exercices:

Exercice 1

Calculer:

a.
$$|3 - 2i|$$

b.
$$|\overline{-3i}|$$

c.
$$|\sqrt{2} + i|$$

$$d. \left| \frac{-3i}{(\sqrt{2}+i)^2} \right|$$

Exercice 2

Placer les nombres complexes suivants dans le plan complexe :

a.
$$z_1$$
 tel que $|z_1| = 2$ et $\arg(z_1) = \frac{\pi}{2}$

b.
$$z_2$$
 tel que $|z_2| = 1$ et $\arg(z_2) = \frac{\pi}{4}$

a.
$$z_1$$
 tel que $|z_1| = 2$ et $\arg(z_1) = \frac{\pi}{2}$ c. z_3 tel que $|z_3| = 3$ et $\arg(z_3) = \frac{3\pi}{4}$

d.
$$z_4$$
 tel que $|z_4| = 4$ et $\arg(z_4) = \frac{\pi}{3}$

Exercice 3

Dans le plan complexe, A, B et C sont les points d'affixes :

$$z_A = 1 + i$$
, $z_B = 4 + 5i$, $z_C = 5 - 2i$.

a. Montrer que
$$AB=AC,$$
 puis que $(\overrightarrow{AB};\overrightarrow{AC})=-\frac{\pi}{2}.$

b. Déterminer l'affixe du point K tel que le quadrilatère ABKC soit un rectangle.

c. Déterminer l'affixe du point G tel que le quadrilatère AGBC soit un parallélogramme.

d. Vérifier que B est le milieu du segment [GK].

Exercice 4

Déterminer l'ensemble des points M d'affixe z tels que :

•
$$|z - 6i| = 3$$
 • $|z + 3 - 2i| < 2$ • $|z + 2i| = |z - 3i + 1|$ • $|2 - iz| = |z + 5|$ • $|\frac{z + 2i}{z + 1 - 2i}| > 1$

Dans le plan complexe un point M peut-être repéré par ses coordonnées cartésienne (x; y), ou son affixe complexe z = x + iy, ou par ses coordonnées polaires $(r; \theta)$, avec r = OM et $\theta = (\overrightarrow{u}; \overrightarrow{OM}).$

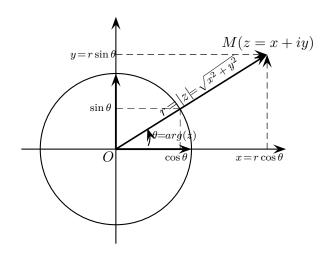
On a les relations :

$$r = \sqrt{x^2 + y^2}$$

$$r = \sqrt{x^2 + y^2}$$

$$\cos \theta = \frac{x}{r}, \sin \theta = \frac{y}{r} \iff x = r \cos \theta \text{ et } y = r \sin \theta$$
L'affixe z du point M s'écrit alors, $z = r(\cos \theta + i \sin \theta)$

Cette écriture est la forme trigonométrique de z.



Exercice:

Définition

Écrire sous forme trigonométrique les nombres complexes suivants :

$$\bullet \ z_2 = -4 \qquad \bullet \ z_3 = 2i$$

•
$$z_3 = 2i$$

•
$$z_4 = -1 + i$$

•
$$z_4 = -1 + i$$
 • $z_5 = -\sqrt{3} + i$

•
$$z_6 = -17$$

•
$$z_7 = -6\sqrt{3} + 6i$$

$$\bullet$$
 $z_{\circ} = 5i$

•
$$z_7 = -6\sqrt{3} + 6i$$
 • $z_8 = 5i$ • $z_9 = \sqrt{6} + i\sqrt{2}$.

V.1 Exercices

Écrire sous forme trigonométrique et exponentielle les nombres complexes :

b.
$$4 + 4i$$

c.
$$\frac{3}{2}i$$

d.
$$\frac{2}{1-i}$$

e.
$$\sqrt{3} - i$$

f.
$$(\sqrt{3} - i)^2$$

g.
$$(\sqrt{3} - i^3)$$