T^{le} spé 27/10/2025

Corrigé : Exercices

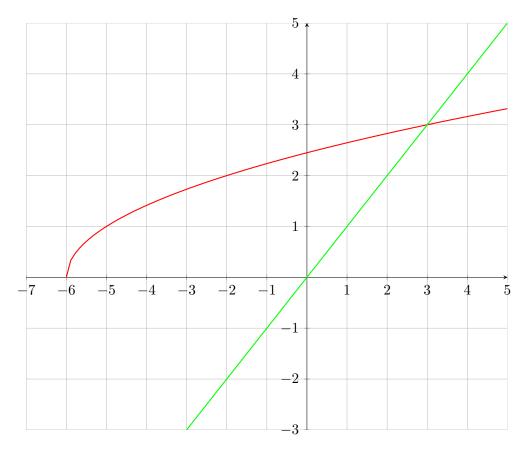
Suites numériques

Exercice 1/33

Soit (u_n) la suite définie par $u_0 = -2$ et pour tout $n \in \mathbb{N}$:

$$u_{n+1} = \sqrt{u_n + 6}$$

Représenter sur l'axe des abscisses les premiers termes de la suite (u_n) .



Exercice 2/33

Déterminer, si elle existe, la limite de la suite de terme général u_n .

1.
$$u_n = 2n^2 + 3n - 3$$

$$3. \ u_n = \frac{2}{n+2}$$

5.
$$u_n = \frac{4n-2}{n+8}$$

2.
$$u_n = n^2 - n + 1$$

3.
$$u_n = \frac{2}{n+2}$$

4. $u_n = \frac{3n^2 + 2}{n+3}$

6.
$$u_n = \frac{1}{n}(2 - 3n + 8n^2)$$

27/10/2025

Exercice 3/33

La suite (u_n) est définie pour tout entier naturel $n \ge 1$ par $u_n = \frac{(-1)^n \sin{(n)}}{n^3}$.

- 1. Démontrer que pour tout $n \ge 1$, $-\frac{1}{n^3} \le u_n \le \frac{1}{n^3}$.
- 2. En déduire la limite de la suite (u_n) .

Exercice 4/33 : Retour sur la récurrence

Soit (u_n) la suite définie par $u_0 = 0$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \sqrt{u_n + 6}$.

- 1. Démontrer que pour $n \in \mathbb{N}$, $0 \le u_n \le u_{n+1} \le 3$.
- 2. Démontrer que cette suite converge et déterminer sa limite.

Solution:

- 1. Récurrence simple
- 2. Croissance + majoration = convergence Soit ℓ la limite de la suite (u_n) . D'après ce qui précède $l \in [0;3]$. Or la fonction itératrice est continue sur [0, 3]. Donc ℓ est solution de l'équation $\ell = \sqrt{\ell + 6}$. D'où $\ell = 3$.

Exercice 5/33

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}^*$ par :

$$u_n = 1 + \frac{1}{3+1} + \frac{1}{\left(3 + \frac{1}{2}\right)^2} + \dots + \frac{1}{\left(3 + \frac{1}{n}\right)^n}$$

et (v_n) la suite définie pour tout $n \in \mathbb{N}^*$ par :

$$v_n = 1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n}$$

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, $u_n \leq v_n$.
- 2. Montrer que la suite (v_n) est majorée.
- 3. Démontrer que la suite (u_n) est croissante. Étudier alors la convergence de la suite (u_n) .
- 4. Donner un encadrement de la limite de (u_n) .

1.
$$\forall k \in \mathbb{N}^*, \ 3 + \frac{1}{k} \ge 3 \Longleftrightarrow \left(3 + \frac{1}{k}\right)^k \ge 3^k \Longleftrightarrow \frac{1}{\left(3 + \frac{1}{k}\right)^k} \le \frac{1}{3^k} \text{ D'où } \forall n \in \mathbb{N}^*, \ u_n \le v_n$$

2.
$$v_n = 1 \times \frac{1 - \left(\frac{1}{3}\right)^{n+1}}{1 - \frac{1}{2}}$$
 (somme des termes d'une suite géométrique).

Donc
$$v_n = \frac{3^{n+1} - 1}{2 \times 3^n} = \frac{3}{2} - \frac{1}{2 \times 3^n}$$

Finalement, $\forall n \in \mathbb{N}, \ v_n \leq \frac{3}{2}$

- 3. $u_{n+1} u_n \ge 0$ croissance + majoration = convergence
- 4. Soit ℓ la limite de la suite (u_n) . Alors $\frac{5}{4} \le \ell \le \frac{3}{2}$ $(u_1 = \frac{5}{4})$.

Exercice 6/33

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}^*$ par $u_n = \frac{1}{2} \times \frac{3}{4} \times ... \times \frac{2n-1}{2n}$.

- 1. Étudier la monotonie de la suite (u_n) .
- 2. Pourquoi peut-on affirmer que la suite (u_n) converge?

Solution:

- 1. (u_n) est décroissante (calculer $\frac{u_{n+1}}{u_n}$).
- 2. décroissance + minoration par 0 = convergence.

Exercice 7/33

Dans chacune des questions suivantes , une ou plusieurs affirmations sont vraies. Justifier lesquelles.

- 1. Une suite décroissante et positive :
 - (a) tend vers 0

(c) peut ne pas être majorée

(b) converge

- (d) est majorée
- 2. Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{3n+4}{n+1}$. La suite (u_n) est :
 - (a) croissante

(c) minorée

(b) décroissante

- (d) majorée
- 3. Soit (u_n) et (v_n) deux suites telles que $\lim_{u_n \to +\infty} u_n = +\infty$ et $\lim_{v_n \to +\infty} v_n = -\infty$. Alors $u_n v_n$ a pour limite :
 - (a) 0

(c) $-\infty$

(b) $+\infty$

- (d) On ne peut pas conclure.
- 4. Soit (u_n) la suite définie pour tout $n \in \mathbb{N}^*$ par $u_n = \frac{1}{n^2} + \frac{1}{n^2 + 1} + \dots + \frac{1}{n^2 + n}$.
 - (a) (u_n) converge vers 0

- (c) $\lim_{u_n \to +\infty} u_n = +\infty$
- (b) (u_n) converge vers un réel non nul
- (d) (u_n) est bornée.
- 5. Soit (u_n) une suite vérifiant pour tout $n \in \mathbb{N}, u_n \geq 2n$. Alors :
 - (a) (u_n) est croissante

(c) (u_n) n'est pas majorée

(b) (u_n) est majorée

(d) (u_n) diverge vers $+\infty$

- 1. (b) et (d) (majorée par son premier terme)
- 2. (b) et (c) et (d) (majorée par 4 car $\frac{3n+4}{n+1} = \frac{3(n+1)+1}{n+1} = 3 + \frac{1}{n+1}$
- 3. (b)
- 4. (a) et (d)

Exercice 8/33 : Nombre d'Erdös et nombre de Champernowne.

- 1. On pose $u_1=0,2$; $u_2=0,23$; $u_3=0,235$; ...; u_n est le nombre obtenu en juxtaposant les n premiers nombres premiers après la virgule. Démontrer que la suite est convergente.
- 2. On pose $u_1 = 0, 1$; $u_2 = 0, 12$; $u_3 = 0, 123$; ...; $u_{10} = 0, 12345678910$; (u_n) est le nombre obtenu en juxtaposant les n premiers nombres entiers après la virgule. Démontrer que cette suite est convergente.

Solution:

- 1. Suite croissante et majorée
- 2. Suite croissante et majorée

Exercice 9/33

Soit (v_n) la suite définie, pour tout entier naturel n, par $v_n = n^3$.

- 1. A partir de quel rang a-t-on, $v_n > 1000$?
- 2. A l'aide de la définition, montrer que (v_n) diverge vers $+\infty$.

Solution:

- 1. n > 11
- 2. Soit A un réel.

Il faut montrer qu'il existe un rang N tel que si $n \ge N$, alors $n^3 > A$.

Si A < 0 alors N = 0 convient.

Si $A \ge 0$ alors l'inégalité $n^3 > A$ équivaut à $n > \sqrt[3]{A}$. En posant N comme étant l'entier directement supérieur à $\sqrt[3]{A}$, si $n \ge N$ alors $n^3 > A$.

Donc (v_n) diverge vers $+\infty$

Exercice 10/33 : Règles opératoires sur les limites

Étudier la convergence de chacune des suites (u_n) suivantes.

1.
$$u_n = n^3 - 2n^2 + 3$$

1.
$$u_n = n^3 - 2n^2 + 3$$

2. $u_n = \frac{5}{n^4} - \frac{1}{\sqrt{n}} + \pi \text{ avec } n \ge 1$

3.
$$u_n = \frac{2n^3 + 3n + 5}{n^2 + n - 2}$$

4.
$$u_n = \sqrt{n+2} - \sqrt{n}$$

5.
$$u_n = 2 \times \pi^n - 3 \times (0,5)^n$$

6.
$$u_n = 8^n - 2^{n+1}$$

1.
$$\lim_{n \to +\infty} u_n = +\infty$$

$$2. \lim_{n \to +\infty} u_n = \pi$$

$$3. \lim_{n \to +\infty} u_n = 0$$

$$4. \lim_{n \to +\infty} u_n = 0$$

$$5. \lim_{n \to +\infty} u_n = +\infty$$

6.
$$\lim_{n\to+\infty} u_n = +\infty$$

Exercice 11/33 : Théorème d'encadrement

Étudier la convergence des suites (u_n) suivantes.

1.
$$u_n = \frac{\sqrt{n} + (-1)^n}{n^2}$$
 avec $n \ge 1$

3.
$$u_n = \frac{1}{n}\cos\left(\frac{n\pi}{5}\right)$$
 avec $n \ge 1$

2.
$$u_n = \frac{n^2 - \cos(n)}{n^2 + 1}$$

4.
$$u_n = \sum_{k=1}^n \frac{n}{k+n^2}$$

Solution:

1.
$$\lim_{n \to +\infty} u_n = 0$$

$$3. \lim_{n \to +\infty} u_n = 0$$

$$2. \lim_{n \to +\infty} u_n = 1$$

4.
$$\lim_{n \to +\infty} u_n = 1$$

Exercice 12/33

Déterminer, si elle existe, la limite des suites u_n :

1.
$$\left(\frac{2n+(-1)^n\sqrt{n}}{n+1}\right)_{n\in\mathbb{N}}$$
 2. $\left(n\sin\left(\frac{1}{n}\right)\right)_{n>0}$ 3. $\left(\frac{\sqrt{n}}{\ln n}\right)_{n>1}$

$$2. \left(n \sin \left(\frac{1}{n} \right) \right)_{n > 0}$$

3.
$$\left(\frac{\sqrt{n}}{\ln n}\right)_{n>1}$$

Exercice 13/33 : Théorème de comparaison

Les deux questions sont indépendantes.

- 1. La suite (u_n) est définie par $u_n = \sqrt{n^2 + 1}$ pour $n \in \mathbb{N}$.
 - (a) Étudier la convergence de la suite (u_n) .
 - (b) En déduire la limite de la suite (v_n) définie sur \mathbb{N} par $v_n = n \sqrt{n^2 + 1}$
- 2. La suite (u_n) est définie par $u_n = n + 1 \cos(n)$ pour $n \in \mathbb{N}$.
 - (a) Démontrer que pour tout entier naturel n, on a : $n \ge u_n \ge n + 2$.
 - (b) Quel est le comportement de la suite en $+\infty$.
- 3. Soit la suite (u_n) définie sur \mathbb{N} par $u_n = 2^n n$. Démontrer par récurrence que pour tout naturel $n \geq 3$, $u_n \geq 1, 5^n$. En déduire la divergence de (u_n) .

Solution:

- 1. La suite (u_n) est définie par $u_n = \sqrt{n^2 + 1}$ pour $n \in \mathbb{N}$.
 - (a) $\lim_{n \to +\infty} u_n = +\infty$
 - (b) $\lim_{n\to+\infty} v_n = 0$
- 2. La suite (u_n) est définie par $u_n = n + 1 \cos(n)$ pour $n \in \mathbb{N}$.
 - (a) Utiliser $-1 \le cos(x) \le 1$
 - (b) $\lim_{n \to +\infty} u_n = +\infty$
- 3. Récurrence simple : initialisation, hérédité et conclusion.

Exercice 14/33 : Calcul de limites de suites particulières

- 1. Soit la suite (S_n) définie sur \mathbb{N} par $S_n = \sum_{k=0}^n (-\frac{1}{3})^k = 1 \frac{1}{3} + (-\frac{1}{3})^2 + \dots + (-\frac{1}{3})^n$. Calculer la limite de la suite (S_n) .
- 2. Soit la suite (u_n) définie sur \mathbb{N} par $u_0 = 1, 9, u_1 = 1, 99, u_2 = 1, 999,...$

Calculer la limite de la suite (u_n) .

3. Calculer la limite de la suite (S_n) définie sur \mathbb{N}^* par $S_n = \sum_{k=0}^n \frac{1}{(k+1)(k+2)}$

Solution:

1. Cette somme correspond à la somme des termes d'une suite géométrique de raison $q = -\frac{1}{3}$ et de premier terme 1.

Donc d'après le cours : $\lim_{n \to +\infty} S_n = \frac{1}{1 - (-\frac{1}{2})} = \frac{3}{4}$

2. On a $u_n = 1 + \sum_{k=0}^{n} 0.9 \times 10^{-k}$ or $\lim_{n \to +\infty} \sum_{k=0}^{n} 0.9 \times 10^{-k} = \lim_{n \to +\infty} 0.9 \times \sum_{k=0}^{n} (10^{-1})^k = 10^{-k}$

 $0,9 \times \frac{1}{1-10^{-1}} = 1$ (somme des termes d'une suite géométrique de raison 10^{-1})

D'où $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} 1 + \sum_{k=0}^{n} 0,9 \times 10^{-k} = 2$

3. $\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \sum_{k=0}^n \frac{1}{k+1} - \frac{1}{k+2} = \lim_{n \to +\infty} \sum_{k=0}^n \frac{1}{k+1} - \sum_{k=0}^n \frac{1}{k+2} = \lim_{n \to +\infty} 1 - \frac{1}{n+2} = 1$ (Somme télescopique).

Exercice 15/33

- 1. Soit la suite (u_n) définie sur \mathbb{N} par $u_n = \frac{3n+1}{n+1}$. Démontrer que la suite (u_n) est majorée par 3.
- 2. Soit la suite (u_n) définie sur \mathbb{N}^* par $u_n = n^2 2n + 17 \frac{1}{n^2}$. Démontrer par des minorations successives que la suite (u_n) est minorée.
- 3. Soit (u_n) la suite définie sur \mathbb{N} par $u_0 = 0$ et $u_{n+1} = \sqrt{2 u_n}$. Démontrer par récurrence que la suite (u_n) est bornée. On pourra calculer les premiers termes de la suite (u_n) pour conjecturer un de ses minorants et majorants.

Solution:

- 1. $u_n = \frac{3n+1}{n+1} = \frac{3n+3-2}{n+1} = 3 \frac{2}{n+1} \le 3$ La suite (u_n) est donc majorée par 3.
- 2. $n^2 \ge 1 \iff n^2 2n \ge -1 \iff n^2 2n + 17 \ge 16 \iff n^2 2n + 17 \frac{1}{n^2} \ge 15$ Donc 15 est un minorant de la suite (u_n) .
- 3. Soit pour tout n entier naturel la proposition P(n) suivante : $0 \le u_n \le 1, 5$

Initialisation : rang n = 0.

 $u_0 = 0$ La propriété est donc vraie au rang n = 0.

Hérédité : Supposons P(n) vraie pour un certain rang n et montrons que cela implique P(n+1) vrai.

$$P(n) \text{ vraie } \iff 0 \le u_n \le 1, 5$$

$$\iff 2 \ge 2 - u_n \ge 2 - 1, 5$$

$$\iff 1, 5 \ge \sqrt{2} \ge \sqrt{2 - u_n} \ge \sqrt{0, 5} \ge 0$$

$$\implies 1, 5 \ge u_{n+1} \ge 0$$

Conclusion : P(n) vraie $\Longrightarrow P(n+1)$ vraie. La propriété est donc héréditaire à partir du rang n=0.

D'après le principe de récurrence : $\forall n \in \mathbb{N}, P(n)$ est vraie.

La propriété est ainsi démontrée.

Exercice 16/33

On considère la suite (u_n) définie sur \mathbb{N} par $u_n = 2n^2 - 3n + 1$.

- 1. Justifier pourquoi pour tout réel A > 0 il existe un rang N à partir duquel $u_n > A$.
- 2. Écrire un algorithme qui peut retourner ce rang N après que l'utilisateur ait rentré le réel A.
- 3. Implémenter l'algorithme précédent puis déterminer le rang N à partir duquel on a $u_n > 10^7$.

Solution:

- 1. (u_n) est une suite divergente : $\lim_{n \to +\infty} u_n = +\infty$
- 2. Utiliser une fonction et une boucle while.

Exercice 17/33

La suite (u_n) est définie par $u_{n+1} = \sqrt{u_n + 3}$ pour $n \in \mathbb{N}$ avec $u_0 = 1$.

- 1. Représenter dans un repère les premiers termes de la suite (u_n) et émettre des conjectures.
- 2. Quel est le comportement de la suite (u_n) en $+\infty$? Le prouver.
- 3. Calculer la limite de la suite (u_n) .

- 1. Suite croissante et convergente vers un réel positif ℓ donc $\lim_{n \to +\infty} u_n = \ell$ minoration par 1.
- 2. Montrer par récurrence : (u_n) croissante et majorée (par 3 par exemple) donc convergente.
- 3. par unicité de la limite : $\ell = \sqrt{\ell + 3} \Longrightarrow \ell^2 = \ell + 3$. Finalement $\ell = \frac{1 + \sqrt{13}}{2}$

27/10/2025 $\mathbf{T^{le}\ sp\acute{e}}$

Exercice 18/33

Soit la suite (u_n) définie sur \mathbb{N}^* par $u_n = \sum_{k=1}^n \frac{1}{k^2}$.

- 1. Établir l'égalité $\frac{1}{k^2} \le \frac{1}{k-1} \frac{1}{k}$ lorsque $k \ge 2$.
- 2. Démontrer que la suite (u_n) est croissante.
- 3. Démontrer que la suite (u_n) est majorée.
- 4. En déduire la convergence de la suite (u_n) .

Solution:

1.
$$\frac{1}{k-1} - \frac{1}{k} = \frac{k-(k-1)}{k(k-1)} \ge \frac{1}{k^2} \operatorname{car} k - 1 \le k$$

2.
$$u_{n+1} - u_n = \frac{1}{(n+1)^2} \ge 0$$

3.
$$u_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \sum_{k=2}^n \frac{1}{k^2} \le 1 + \sum_{k=2}^n \left(\frac{1}{k-1} - \frac{1}{k} \right) = 2 - \frac{1}{n} \le 2$$

4. Suite croissante majorée = convergente (vers $\frac{\pi^2}{6}$ sera vu dans le supérieur).

Exercice 19/33

Soit la suite (u_n) définie par $u_0 = \frac{1}{2}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n(2 - u_n)$.

- 1. Soit la fonction f définie sur \mathbb{R} par f(x) = x(2-x). Montrer que f est strictement croissante dans l'intervalle [0;1] et que pour tout $x \in [0;1]$, $f(x) \in [0;1]$.
- 2. En déduire, à l'aide d'un raisonnement par récurrence, que pour tout $n \in \mathbb{N}$, on a $u_n \in [0,1]$.
- 3. Démontrer que la suite (u_n) est croissante.
- 4. En déduire que la suite (u_n) est convergente et calculer alors sa limite ℓ .

Solution:

1. f est dérivable sur \mathbb{R} comme produit de fonction dérivable sur \mathbb{R} .

$$f'(x) = 2 - x - x = 2 - 2x$$
$$f'(x) \ge 0 \Longleftrightarrow x \le 1$$

La fonction f est donc strictement croissante sur l'intervalle [0;1]. De plus, f(0)=0 et f(1)=1:

f étant strictement croissante, $\forall x \in [0;1], f(x) \in [0;1].$

- 2. Récurrence sur l'inégalité $0 \le u_n \le 1$ en utilisant la fonction f étudiée précédemment.
- 3. Récurrence sur l'inégalité $u_{n+1} \ge u_n$ en utilisant la fonction f étudiée précédemment.
- 4. la suite (u_n) est croissante et majorée par 1, elle est donc convergente. D'après l'unicité de la limite :

$$\ell = \ell(2 - \ell) \iff \ell^2 - \ell = 0$$

$$\ell=0$$
ou $\ell=1$

La suite (u_n) étant strictement croissante et $u_0 = \frac{1}{2}$: $\ell = 1$

Exercice 20/33: Type bac

On considère la suite (u_n) définie par $u_0 = 0$ et, pour tout entier naturel n, $u_{n+1} = 3u_n - 2n + 3$.

- 1. Calculer u_1 et u_2 .
- 2. (a) Démontrer par récurrence que, pour tout entier naturel $n, u_n \ge n$.
 - (b) En déduire la limite de la suite (u_n) .
- 3. Démontrer que la suite (u_n) est croissante.
- 4. Soit la suite (v_n) définie, pour tout entier naturel n, par $v_n = u_n n + 1$.
 - (a) Démontrer que la suite (v_n) est une suite géométrique.
 - (b) En déduire que, pour tout entier naturel n, $u_n = 3^n + n 1$.
- 5. (a) Soit p un entier naturel non nul. Pourquoi peut-on affirmer qu'il existe au moins un entier n_0 tel que, pour tout $n \ge n_0$, $u_n \ge 10^p$?

On s'intéresse maintenant au plus petit entier n_0 .

- (b) Justifiez que $n_0 \leq 3p$.
- (c) Déterminer à l'aide de la calculatrice cet entier n_0 pour la valeur p=3
- (d) Proposer un algorithme qui, pour une valeur de p donnée en entrée, affiche en sortie la valeur du plus petit entier n_0 tel que, pour tout $n \ge n_0$, on a $u_n \ge 10^p$.

- 1. $u_1 = 3$ et $u_2 = 9 2 + 3 = 10$
- 2. (a) Récurrence simple : $u_n \ge n \iff u_{n+1} \ge n+3 \ge n...$
 - (b) $\forall n \in \mathbb{N}, \ u_n \ge n \Longrightarrow \lim_{n \to +\infty} u_n = +\infty$
- 3. $u_{n+1} u_n = 2u_n 2n + 3 \ge 2n 2n + 3 = 3$ d'où le résultat...
- 4. (a) $v_{n+1} = 3u_n 2n + 3 (n+1) + 1 = 3u_n 3n + 3 = 3(u_n n + 1)$ (v_n) est une suite géométrique de raison q = 3 et de premier terme $v_0 = 1$
 - (b) $v_n = 3^n \text{ donc } 3^n = u_n n + 1 \iff u_n = 3^n + n 1$
- 5. (a) $\lim_{n \to +\infty} u_n = +\infty$
 - (b) $3^{3p} + 3p 1 = 27^p + 3p 1 \ge 27^p \ge 10^p$ d'où $n_0 \le 3p$ (la suite (u_n) est croissante).
 - (c)

27/10/2025 Tle spé

Exercice 21/33

 (u_n) est une suite définie par $u_0 = 2$ et, pour tout nombre entier naturel n, $u_{n+1} = 3 - \frac{4}{u_n + 1}$.

- 1. Démontrer que pour tout naturel $n, u_n \in [1; 2]$.
- 2. Vérifier que pour tout entier naturel $n: u_{n+1} u_n = -\frac{(u_n 1)^2}{u_n + 1}$
- 3. En déduire le sens de variation de la suite (u_n) .
- 4. Démontrer que la suite (u_n) converge et calculer sa limite.
- 5. Démontrer que la suite (S_n) définie par $S_n = \sum_{k=0}^n u_k$ diverge vers $+\infty$.
- 6. Compléter l'algorithme suivant pour qu'il retourne la valeur de S_n une fois que l'utilisateur a saisi la valeur de n:

```
Entree: n un entier
                             naturel
Variables
  u, s sont des variables réelles n, i sont des variables entières
Initialisation :
  u prend la valeur 2
  s prend la valeur u
  i prend la valeur 0
  Demander la valeur de n
Traitement
TantQue
     Affecter à i la valeur i+1
Affecter à u la valeur ...
Affecter à s la valeur ...
Fin Tant Que
Sortie :
   Afficher
```

Solution:

1. Récurrence simple

2.
$$u_{n+1} - u_n = 3 - \frac{4}{u_n + 1} - u_n = \frac{3u_n + 3 - 4 - u_n^2 - u_n}{u_n + 1} = \frac{2u_n - 1 - u_n^2}{u_n + 1} = -\frac{(u_n - 1)^2}{u_n + 1}$$

3.
$$\forall n \in \mathbb{N}, \ u_n \in [0,1] \Longrightarrow \forall n \in \mathbb{N}, \ -\frac{(u_n-1)^2}{u_n+1} \le 0$$

La suite (u_n) est donc décroissante.

4. La suite (u_n) est décroissante et minorée par 1 elle est donc convergente. Par unicité de la limite ℓ :

 $\ell = 3 - \frac{4}{\ell + 1} \iff \ell^2 - 2\ell + 1 = 0 \iff (\ell - 1)^2 = 0$

Finalement, $\ell = 1$

27/10/2025 $\mathbf{T^{le}\ sp\acute{e}}$

- 5. $1 \le u_n \le 2 \iff n \le S_n \le 2n$ Théorème des gendarmes...
- 6. Tant que i<n u=3-4/(u+1) s=s+u

Exercice 22/33: Vrai ou Faux

- 1. La suite (u_n) définie sur \mathbb{N} par $u_n = (-1)^n$ est convergente.
- 2. Si (u_n) est une suite de réels non nuls telle que $\lim_{n\to+\infty} u_n = 0$, alors $\lim_{n\to+\infty} \frac{1}{u_n} = +\infty$
- 3. $\lim_{n \to +\infty} \sqrt{n} = +\infty$
- $4. \lim_{n \to +\infty} \frac{n^2 + 1}{n} = 1$
- 5. Soit la suit (t_n) définie sur \mathbb{N} par :

$$\begin{cases} t_0 = 0 \\ t_{n+1} = t_n + \frac{1}{(n+1)(n+2)} & \text{si } n \ge 0 \end{cases}$$

La suite (t_n) admet pour terme explicite $t_n = \frac{n}{n+1}$ lorsque $n \ge 0$.

6. Soit (u_n) la suite définie sur \mathbb{N}^* par :

$$\begin{cases} u_1 = 1,5 \\ u_{n+1} = 2u_n + \frac{1}{n} & \text{si } n \ge 1 \end{cases}$$

La suite (u_n) converge vers 2.

- $7. \lim_{n \to +\infty} n n^2 = 0$
- 8. Si les suites (u_n) et (v_n) sont définies par $u_0 = 1$, $u_{n+1} = 2u_n + 3$ et $v_n = u_n + 3$, alors la suite (v_n) est géométrique.
- 9. Soit (u_n) une suite numérique définie sur \mathbb{N} . On définie une suite (S_n) pour tout $n \in \mathbb{N}$ par $S_n = \sum_{k=0}^n u_k$. Si la suite (u_n) est convergente, alors la suite (S_n) est convergente.
- 10. $\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}$ tend vers 1 lorsque n tend vers $+\infty$.
- 11. Soit (u_n) une suite bornée sur \mathbb{N} alors la suite $\frac{u_n}{n}$ avec $n \geq 1$ est convergente.
- 12. On considère la suite (u_n) définie par $u_0=1$ et pour tout naturel $n,\ u_{n+1}=\sqrt{3u_n}$ alors pour tout $n\in\mathbb{N}$ on a $0\leq u_n\leq 3$
- 13. Soit (u_n) une suite récurrente définie sur \mathbb{N} et de termes strictement positifs. On considère également une suite récurrente définie sur \mathbb{N} par $v_n = \frac{2}{u_n}$. Si la suite (v_n) est majorée et la suite (u_n) décroissante alors la suite (v_n) est convergente.
- 14. Soit une suite (u_n) qui vérifie pour tout entier naturel $n \ge 1$, $|u_n \sqrt{2}| \le \frac{1}{n} |u_n|$. Si la suite (u_n) est bornée alors elle converge vers $\sqrt{2}$.
- 15. Toute suite majorée convergente est croissante.
- 16. Soit une suite (u_n) définie pour tout entier $n \in \mathbb{N}$ par $u_{n+1} u_n = \frac{1}{2}$ et $u_0 = 1$. La suite (u_n) est croissante et majorée.

Solution:

- 1. faux
- 2. faux (attention au signe)
- 3. vrai (calculer $t_{n+1} t_n$ en supposant vrai l'expression)
- 4. faux (Si une limite ℓ existe alors $\ell = 2\ell$)
- 5. vrai
- 6. faux
- 7. faux
- 8. vrai
- 9. faux ($u_n = \frac{1}{n}$)
- 10. vrai
- 11. vrai
- 12. vrai
- 13. vrai
- 14. vrai
- 15. faux $(u_n = \frac{1}{n}\sin(n))$
- 16. Faux

Exercice 23/33 : Suite arithmético-géométrique

Soit la suite (u_n) définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 3u_n - 1$.

- 1. Calculer le réel b pour lequel la suite (v_n) définie par $v_n = u_n + b$, $n \in \mathbb{N}$ est géométrique.
- 2. Exprimer (v_n) puis (u_n) en fonction de n.
- 3. En déduire la limite de (u_n) .

Solution:

- 1. b = -0.5
- 2. $v_n = 0, 5 \times 3^n$ et $u_n = 0, 5 \times (3^n + 1)$
- 3. $\lim_{n \to +\infty} u_n = +\infty$

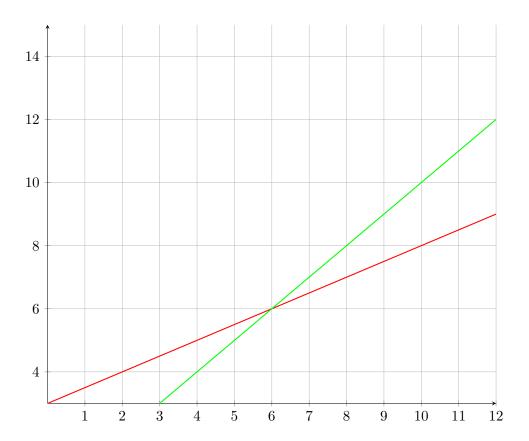
Exercice 24/33 : Suite arithmético-géométrique

On considère la suite (u_n) définie par $u_0 = 10$ et pour tout entier $n \in \mathbb{N}$, $u_{n+1} = 0, 5 \times u_n + 3$.

- 1. Résoudre l'équation x = 0, 5x + 3. Dans la suite, on notera r la solution de cette équation.
- 2. On considère la $(v_n) = (u_n r)$.
 - (a) Montrer que la suite v est géométrique. Préciser sa raison et son premier terme.
 - (b) Exprimer v_n en fonction de n.
 - (c) Déterminer la limite de la suite (v_n) .
- 3. Exprimer u_n en fonction de v_n et déterminer la limite de la suite (u_n)
- 4. Représenter sur le graphique ci-dessous, u_0 , u_1 , u_2 et u_3 . Votre construction est-elle conforme avec le résultat de la question précédente? (On a représenté en vert la courbe représentative de la fonction d'équation y = x et en rouge y = 0.6x + 8)

27/10/2025

Tle spé



Solution:

1.
$$r = \frac{8}{0.4} = 20$$

2. On considère la $(v_n) = (u_n - r)$.

(a) $v_{n+1} = 0, 6u_n + 8 - 20$ donc $v_{n+1} = 0, 6u_n - 12 = 0, 6(u_n - 20) = 0, 6v_n$ Suite géométrique de raison 0,6 et de premier terme $v_0 = 41$.

(b)
$$v_n = 41 \times 0, 6^n$$

(c)
$$\lim_{n \to +\infty} v_n = 0$$

3.
$$u_n = 41 \times 0, 6^n + 20$$
 et $\lim_{n \to +\infty} u_n = 20$

Exercice 25/33 : Suite récurrente homographique et suite auxiliaire géométrique

Soit la suite (u_n) définie par $u_0=0$ et pour tout entier naturel $n,\ u_{n+1}=\frac{4u_n-2}{u_n+1}$. On supposera ici que la suite (u_n) est bien définie autrement dit que pour $n\in\mathbb{N}:u_n\neq -1$.

- 1. On définit une suite auxiliaire (v_n) par $v_n = \frac{u_n 2}{u_n 1}$ avec $n \in \mathbb{N}$. On supposera ici que pour $n \in \mathbb{N}$, $u_n \neq 1$. Démontrer que la suite (v_n) est géométrique et exprimer v_n en fonction de n.
- 2. En déduire l'expression de u_n en fonction de n ainsi que sa limite.

1.
$$v_{n+1} = \frac{2}{3}v_n \text{ donc } v_n = 2 \times (\frac{2}{3})^n$$

27/10/2025 $\mathbf{T^{le}\ sp\acute{e}}$

2.
$$u_n = \frac{(\frac{2}{3})^n \times 2 - 2}{(\frac{2}{3})^n \times 2 - 1} \operatorname{donc} \lim_{n \to +\infty} u_n = 2.$$

Exercice 26/33 : Suite récurrente homographique et suite auxiliaire arithmétique

Soit la suite (u_n) définie par $u_0 = 0$ et pour tout entier naturel n, $u_{n+1} = \frac{u_n - 4}{u_n - 3}$. On supposera que pour $n \in \mathbb{N}$: $u_n \neq 3$.

- 1. On définit une suite auxiliaire (v_n) par $v_n = \frac{1}{u_n 2}$ avec $n \in \mathbb{N}$. On supposer que pour $n \in \mathbb{N}$: $u_n \neq 2$. Démontrer que la (v_n) est arithmétique et exprimer v_n en fonction de n.
- 2. En déduire l'expression de u_n en fonction de n ainsi que sa limite.

Solution:

- 1. $v_{n+1} = v_n 1$ donc $v_n = -\frac{1}{2} + n \times (-1)$
- 2. $u_n = \frac{1}{-\frac{1}{2} + n \times (-1)} + 2 \text{ donc } \lim_{n \to +\infty} u_n = 2.$

Exercice 27/33 : Sauvegarde d'une espèce

La population du chabot du lez diminue de 25% par an. La population du 1^{er} mars 2020 était de 3000 individus. Il est décidé d'introduire 400 alevins tous les ans pour enrayer la disparition de l'espèce. On note u_n le nombre d'individus, en milliers, présents dans la rivière le 1^{er} mars 2020 + n.

- 1. Expliquer pourquoi $u_0 = 3$ et $u_1 = 2.65$.
- 2. Exprimer u_{n+1} en fonction de u_n .
- 3. Déterminer la suite constante égale à l qui vérifie la même relation de récurrence que (u_n) .
- 4. Montrer que la suite $(u_n l)$ est géométrique de raison 0.75. En déduire une expression de u_n en fonction de n.
- 5. Déterminer la limite de la suite (u_n) quand n tend vers l'infini. Interpréter le résultat pour la situation étudiée.

- 1. Le nombre initial d'individus est 3 000 donc $u_0 = 3$. Puis $u_1 = 0.75 \times 3 + 0.4 = 2.65$.
- 2. $u_{n+1} = 0.75u_n + 0.4$
- 3. On cherche l telle que l = 0.75l + 0.4 donc l = 1.6
- 4. $u_{n+1} l = 0.75u_n + 0.4 1.6 \iff u_{n+1} l = 0.75u_n 1.2 \iff u_{n+1} l = 0.75(u_n 1.6)$ On a donc bien $u_{n+1} - l = 0.75(u_n - l)$ Donc $(u_n - l)$ est une suite géométrique de raison 0.75 et de premier terme $u_0 - l = 3 - 1.6 = 1.4$. $u_n = 1.4 \times 0.75^n + 1.6$
- 5. 0 < 0.75 < 1 donc la limite de la suite (u_n) lorsque n tend ver l'infini est 1.6. La population de poissons se stabilisera à long terme autour de 1600 individus.

Exercice 28/33

Déterminer le sens de variation de chacune des suites :

- 1. La suite (u_n) définie, pour tout $n \in \mathbb{N}$ par $u_n = n!$,
- 2. La suite (v_n) définie, pour tout $n \in \mathbb{N}$, par $v_n = \frac{n!}{2^n}$,
- 3. La suite (w_n) définie, pour tout $n \in \mathbb{N}$ par :

$$w_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$$

,

4. La suite (z_n) définie, pour tout $n \in \mathbb{N}^*$, par $z_n = \frac{1}{n \times n!}$.

Solution:

- 1. $\frac{u_{n+1}}{u_n} > 1$ croissante.
- 2. $v_{n+1} v_n \ge 0$ pour $n \ge 1$ croissante et décroissante avant.

Exercice 29/33 : Un peu de Python

On considère la suite (u_n) définie par $u_0 = 1$ et par la relation $u_{n+1} = u_n + n + 1$ pour tout entier naturel n.

1. Compléter l'algorithme ci-contre pour que la variable n contienne après son exécution le plus petit entier naturel n_0 tel que u_{n_0} est strictement supérieur à A.

$$\begin{array}{c} u \leftarrow \dots \\ n \leftarrow \dots \\ \text{Tant que } \dots \\ u \leftarrow \dots \\ u \leftarrow \dots \\ \text{Fin Tant que} \end{array}$$

2. Programmer cet algorithme sous forme d'une fonction Python et le tester avec A = 200 puis $A = 5\,000$.

Solution:

$$\begin{aligned} &1. \ u \leftarrow 1 \\ &n \leftarrow 0 \end{aligned}$$
 Tant que $u \leq A$ $u \leftarrow u + n + 1$ $u \leftarrow n + 1$ Fin Tant que

 $2. \ n = 100$

Exercice 30/33: Pour aller plus loin

Soit la suite (u_n) définie par $u_0 = 0, 5$ et pour tout entier naturel n:

$$u_{n+1} = \sqrt{2 - u_n}$$

- 1. La suite (u_n) est-elle monotone? Justifier votre résultat.
- 2. Démontrer par récurrence que pour tout $n \in \mathbb{N}, 0, 5 \leq u_n \leq 1, 3$.

3. Prouver que si la suite (u_n) est convergente alors elle converge forcément vers le réel 1.

4. Démontrer que pour tout
$$n \in \mathbb{N}$$
, on a $u_{n+1} - 1 = \frac{1 - u_n}{\sqrt{2 - u_n} + 1}$

- 5. Quel est le maximum de la fonction f définie sur [0,5;1,3] par $f(x)=\frac{1}{\sqrt{2-x}+1}$?
- 6. En déduire qu'il existe un réel $0 \le k \le 1$ tel que pour tout $n \in \mathbb{N}, \ |u_{n+1} 1| \le k|u_n 1|$.
- 7. Par récurrence prouver que pour tout entier naturel n, $|u_{n+1}-1| \le k^n |u_0-1|$.
- 8. Démontrer alors la convergence de (u_n) vers le nombre réel 1.

Solution:

- 1. $u_0 = 0, 5, u_1 = \sqrt{1,5}, u_3 = \sqrt{0,5}...$
- 2. Récurrence simple.
- 3. Par unicité de la limite : $\ell = \sqrt{2 \ell} \iff \ell^2 + \ell 2 = 0 \iff \ell = 1$ ou $\ell = -1$ $u_n \ge 0$ donc $\ell = 1$.

4.
$$u_{n+1} - 1 = \sqrt{2 - u_n} - 1 = \frac{2 - u_n - 1}{\sqrt{2 - u_n} + 1} = \frac{1 - u_n}{\sqrt{2 - u_n} + 1}$$

- 5. Le maximum de f est atteint lorsque $\sqrt{2-x}$ est à son minimum, c'est à dire en 1,3. $f(1,3)=\frac{1}{\sqrt{0,7}+1}\approx 0,54.$
- 6. $|u_{n+1} 1| = \left| \frac{1 u_n}{\sqrt{2 u_n} + 1} \right| = \left| \frac{1}{\sqrt{2 u_n} + 1} (1 u_n) \right| = \left| \frac{1}{\sqrt{2 u_n} + 1} \right| |(u_n 1)| = |f(u_n)| |(u_n 1)| \le f(1, 3) \times |(u_n 1)| \text{ On pose } f(1, 3) = k \text{ d'où le résultat...}$
- 7. Hérédité : $|u_{n+2}-1|=\left|\frac{1-u_{n+1}}{\sqrt{2-u_{n+1}+1}}\right| \leq k|u_{n+1}-1| \leq kk^n|u_0-1|...$ D'où le résultat.
- 8. k < 1 donc $\lim_{n \to +\infty} k^n = 0$, donc d'après le théorème des gendarmes...

Exercice 31/33 : Pour aller plus loin

On considère les deux suites (u_n) et (v_n) définies pour tout entier $n \in \mathbb{N}$ par :

$$\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{u_n + v_n}{2} \end{cases} \qquad \begin{cases} v_0 = 4 \\ v_{n+1} = \frac{u_{n+1} + v_n}{2} \end{cases}$$

- 1. Calculer u_1, v_1, u_2 et v_2 .
- 2. Soit la suite (w_n) définie pour tout entier naturel n par : $w_n = v_n u_n$.
 - (a) Montrer que la suite (w_n) est une suite géométrique de raison $\frac{1}{4}$.
 - (b) Exprimer w_n en fonction de n et préciser la limite de la suite (w_n) .
- 3. Montrer que les suites (u_n) et (v_n) sont adjacentes. Que peut-on en déduire?
- 4. On considère à présent la suite (t_n) définie, pour tout entier naturel n, par $t_n = \frac{u_n + 2v_n}{3}$
 - (a) Démontrer que la suite (t_n) est constante.
 - (b) En déduire la limite des suites (u_n) et (v_n) .

1.
$$u_1 = \frac{7}{2}$$
, $v_1 = \frac{15}{4}$, $u_2 = \frac{29}{8}$ et $v_2 = \frac{59}{16}$.

2. (a)
$$w_{n+1} = v_{n+1} - u_{n+1} = \frac{u_{n+1} + v_n}{2} - \frac{u_n + v_n}{2} = \frac{\frac{u_n + v_n}{2} - u_n}{2} = \frac{v_n - u_n}{4} = \frac{1}{4}w_n$$

D'où le résultat.

(b)
$$w_n = \left(\frac{1}{4}\right)^n$$
 et $\lim_{n \to +\infty} w_n = 0$

3.
$$u_{n+1} - u_n = \frac{w_n}{2} \ge 0$$
 la suite (u_n) est donc croissante.

$$-v_{n+1}-v_n=\frac{-w_n}{4}\leq 0$$
 la suite (v_n) est donc décroissante.

Les suites (u_n) et (v_n) sont donc adjacentes et de même limite ℓ .

4. (a) $t_{n+1} - t_n = 0$ d'où le résultat...

(b)
$$\forall n \in \mathbb{N}, \ t_n = t_0 = \frac{11}{3}$$

$$\lim_{n \to +\infty} t_n = \lim_{n \to +\infty} \frac{u_n + 2v_n}{3} = \frac{\ell + 2\ell}{3} = \frac{11}{3} \text{ On en déduit } \ell = \frac{11}{3}.$$

Exercice 32/33 : Suite de Héron (encadrement de $\sqrt{2}$) *

On considère la suite (u_n) définie par $u_0 = \frac{3}{2}$ et, pour tout $n \in \mathbb{N}^*$, par :

$$u_{n+1} = \frac{1}{2} \left(u_n + \frac{2}{u_n} \right)$$

- 1. Démontrer par récurrence que pour tout $n \in \mathbb{N}, u_n > 0$.
- 2. (a) Démontrer que pour tout $n \in \mathbb{N}$,

$$u_{n+1} - \sqrt{2} = \frac{1}{2} \times \frac{(u_n - \sqrt{2})^2}{u_n}$$

- (b) En déduire que pour tout $n \in \mathbb{N}$, $u_n > \sqrt{2}$.
- (c) En déduire que pour tout $n \in \mathbb{N}$,

$$u_{n+1} - \sqrt{2} \le \frac{1}{2} \times \frac{(u_n - \sqrt{2})^2}{\sqrt{2}}$$

(d) Démontrer par récurrence que pour tout $n \in \mathbb{N}^*$,

$$u_n - \sqrt{2} \le \frac{(u_0 - \sqrt{2})^{2^n}}{2\sqrt{2}}$$

- (e) Qu'en déduit-on pour la suite (u_n) ?
- (f) A l'aide d'un script en Python calculer u_3 et le comparer à $\sqrt{2}$.

Solution:

1. Récurrence simple

2. (a)
$$\frac{1}{2}\left(u_n + \frac{2}{u_n}\right) - \sqrt{2} = \frac{1}{2}u_n + \frac{1}{u_n} - \sqrt{2} = \frac{\frac{1}{2}u_n^2 + 1 - \sqrt{2}u_n}{u_n} = \frac{1}{2}\frac{(u_n - \sqrt{2})^2}{u_n}$$

- (b) Évident
- (c) Évident avec la question 2b
- (d) Hérédité (non rédigé!) :

$$u_{n+1} - \sqrt{2} \le \frac{1}{2} \times \frac{(u_n - \sqrt{2})^2}{\sqrt{2}}$$

Or d'après l'hypothèse de récurrence :

$$\frac{1}{2} \times \frac{(u_n - \sqrt{2})^2}{\sqrt{2}} \le \frac{1}{2} \times \frac{(\frac{(u_0 - \sqrt{2})^{2^n}}{2\sqrt{2}})^2}{\sqrt{2}}$$

Donc,

$$u_{n+1} - \sqrt{2} \le \frac{1}{8 \times 2\sqrt{2}} (u_0 - \sqrt{2})^{2^{n+1}}$$

Finalement,

$$u_{n+1} - \sqrt{2} \le \frac{(u_0 - \sqrt{2})^{2^{n+1}}}{2\sqrt{2}}$$

(e) (u_n) converge vers $\sqrt{2}$.

Exercice 33/33: type bac

Au début de l'année 2021, une colonie d'oiseaux comptait 40 individus. L'observation conduit à modéliser l'évolution de la population par la suite (u_n) définie pour tout entier naturel n par :

$$\begin{cases} u_0 = 40 \\ u_{n+1} = 0,008u_n(200 - u_n) \end{cases}$$

Où u_n désigne le nombre d'individus au début de l'année (2021 + n).

- 1. Donner une estimation, selon ce modèle, du nombre d'oiseaux dans la colonie au début de l'année 2022.
 - On considère la fonction f définie sur l'intervalle [0; 100] par f(x) = 0,008x(200 x).
- 2. Résoudre dans l'intervalle [0; 100] l'équation f(x) = x.
- 3. (a) Démontrer que la fonction f est croissante sur l'intervalle [0;100] et dresser son tableau de variations.

(b) En remarquant que, pour tout entier naturel $n, u_{n+1} = f(u_n)$ démontrer par récurrence que, pour tout entier naturel $n: 0 \le u_n \le u_{n+1} \le 100$.

- (c) En déduire que la suite (u_n) est convergente.
- (d) Déterminer la limite ℓ de la suite (u_n) . Interpréter le résultat dans le contexte de l'exercice.
- 4. On considère l'algorithme suivant :

```
def seuil(p):
    n=0
    u=40
    while u<p:
        n=n+1
        u=0.008*u*(200-u)
    return(n+2021)</pre>
```

L'exécution de seuil(100) ne renvoie aucune valeur. Expliquer pourquoi à l'aide de la question 3.