

Corrigé : Exercices

ORTHOGONALITÉ

Exercice 1/15

Soit un cube ABCDEFGH de côté a. calculer, en fonction de a, les produits scalaires suivants :

1. $\overrightarrow{AB} \cdot \overrightarrow{AF}$

3. $\overrightarrow{AB} \cdot \overrightarrow{FG}$

2. $\overrightarrow{EG} \cdot \overrightarrow{CA}$

4. $\overrightarrow{BG} \cdot \overrightarrow{BH}$

Solution:

1. $\overrightarrow{AB} \cdot \overrightarrow{AF} = a^2$

3. $\overrightarrow{AB} \cdot \overrightarrow{FG} = 0$

2. $\overrightarrow{EG} \cdot \overrightarrow{CA} = -2a$

 $4. \ \overrightarrow{BG} \cdot \overrightarrow{BH} = a^2$

Exercice 2/15 : Repère orthonormé

Soit un cube ABCDEFGH de côté a.

I et J sont les milieux respectifs de [EF] et [GC].

calculer, en fonction de a, les produits scalaires suivants :

1. $\overrightarrow{EI} \cdot \overrightarrow{HC}$

3. $\overrightarrow{EI} \cdot \overrightarrow{JA}$

 $2. \overrightarrow{EI} \cdot \overrightarrow{GJ}$

4. $\overrightarrow{JH} \cdot \overrightarrow{JD}$

Solution:

1. $\overrightarrow{EI} \cdot \overrightarrow{HC} = \frac{1}{2}$

3. $\overrightarrow{EI} \cdot \overrightarrow{JA} = -\frac{1}{2}$

 $2. \overrightarrow{EI} \cdot \overrightarrow{GJ} = 0$

 $4. \overrightarrow{JH} \cdot \overrightarrow{JD} = \frac{3}{4}$

Exercice 3/15

On considère de nouveau le cube de côté a.

Déterminer une mesure de l'angle θ entre les droites (DF) et (HB) en degré à 10^{-1} près.

Solution : $\theta \approx 70,5^{\circ}$

Exercice 4/15

Considérons un plan \mathcal{P} , et un repère orthonormé de l'espace. Soit A, B et C trois points du plan \mathcal{P} , de coordonnées respectives (1;-1;-3), (-1;1;1) et (2;-3;1).

26/02/2024 $\mathbf{T^{le}\ sp\acute{e}}$

Le vecteur $\overrightarrow{u}(-\frac{8}{3};-2;\frac{2}{3})$ est-il normal au plan \mathcal{P} ?

Solution: Montrer que \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires et sont tout deux orthogonaux à \overrightarrow{u} .

Exercice 5/15

Soit ABCDEFGH une cube de côté a. Montrer que \overrightarrow{AG} est normal au plan (BDE).

Solution: Montrer que \overrightarrow{AG} est orthogonal à \overrightarrow{BE} et \overrightarrow{DE} ;

Exercice 6/15

Soit le cube ABCDEFGH. Montrer que (AB) et (CF) sont orthogonales.

Solution :Montrer que (AB) est orthogonale à (BC) et à (BF). En déduire qu'elle est orthogonale au plan (BCF).

D'où (AB) est orthogonale à toute droite du plan (BCF).

Exercice 7/15

L'espace est rapporté au repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. On considère les points A(2; -1; -5) et B(3; 1; -4) et la droite \mathcal{D} passant par C(4; 6; 9) et de vecteur directeur $\overrightarrow{u}(1; 1; -3)$. Montrer que les droites (AB) et \mathcal{D} sont orthogonales.

Solution: Montrer que \overrightarrow{AB} et \overrightarrow{u} sont orthogonaux.

Exercice 8/15

On considère un cube ABCDEFGH. Démontrer que la droite (DG) est perpendiculaire au plan (BEH).

Solution :(DG) perpendiculaire à (HC) car CDHG est un carré.

(DG) perpendiculaire à (FG) car ADGF est un rectangle.

(FG) est parallèle à (HE), donc (DG) orthogonale à (HE).

(HC) et (HE) appartiennent au plan (BEH) et sont sécantes, d'où le résultat.

Exercice 9/15

Soit ABCDEFGH un cube d'arête 1.

Démontrer que (FD) est orthogonale au plan (ACH).

Solution: Utiliser le repère $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$, pour montrer que \overrightarrow{FD} est orthogonal à deux vecteurs non colinéaires de (ACH).

26/02/2024 T^{le} spé

Exercice 10/15

On considère le point A(2;1;-1) et la droite \mathcal{D} de vecteur directeur $\overrightarrow{u}(-2;1;1)$ passant par le point M(3;-5;2).

Déterminer la distance du point A à la droite \mathcal{D} .

Solution :On calcul le produit scalaire $\overrightarrow{MA} \cdot \overrightarrow{u} = -2$

On calcule $||\overrightarrow{u}|| = \sqrt{6}$

Donc
$$MH = \frac{|\overrightarrow{MA} \cdot \overrightarrow{u}|}{||\overrightarrow{u}||}$$

Le théorème de Pythagore donne $AH = \frac{2\sqrt{102}}{3}$.

Exercice 11/15

Soit le plan \mathcal{P} passant par M(1,1,2) et de vecteur normal $\overrightarrow{n}(1,-2,0)$. Calculer la distance entre \mathcal{P} et le point A(5,0,1).

Solution :
$$d(A, \mathcal{P}) = \frac{2}{\sqrt{2}}$$

Exercice 12/15

Soit ABCDEFGH un cube.

- 1. Montrer que la droite (AC) est orthogonale au plan (BD).
- 2. Calculer $\overrightarrow{AC} \cdot \overrightarrow{BF}$
- 3. En déduire que la droite (AC) est orthogonale au plan (HDB).

Solution:

- 1. ABCD est un carré donc les diagonales (AC) et (BD) sont perpendiculaires
- 2. $\overrightarrow{AC} \cdot \overrightarrow{BF} = 0$
- 3. Les droites (AC) et (BD) sont orthogonales et (AC) et (BF) sont orthogonales donc (AC) est orthogonale à deux droites sécantes du plan (HDB)

Exercice 13/15

ABCDEFGH est un cube de côté α .

I est le point d'intersection de la droite (EC) et du plan (AFH).

- 1. Calculer $\overrightarrow{EA} \cdot \overrightarrow{AF}$, $\overrightarrow{AB} \cdot \overrightarrow{AF}$ et $\overrightarrow{BC} \cdot \overrightarrow{AF}$
- 2. En déduire que les vecteurs \overrightarrow{EC} et \overrightarrow{AF} sont orthogonaux.
- 3. Pour la suite, on admettra de même que les vecteurs \overrightarrow{EC} et \overrightarrow{AF} sont orthogonaux. Montrer alors que I est le projeté orthogonal de E sur (AFH).
- 4. Montrer que les droites (AI) et (HF) sont orthogonales et que les droites (HI) et (AF) sont orthogonales.
- 5. En déduire la position du point I dans le triangle AFH.

Solution:

1. Le projeté orthogonal de F sur (AE) est E donc $\overrightarrow{EA} \cdot \overrightarrow{AF} = -\alpha^2$ Le projeté orthogonal

26/02/2024 $\mathbf{T^{le}\ sp\acute{e}}$

- 2. $\overrightarrow{EC} \cdot \overrightarrow{AF} = (\overrightarrow{EA} + \overrightarrow{AB} + \overrightarrow{BC}) \cdot \overrightarrow{AF} \dots$ d'où le résultat.
- 3. \overrightarrow{EC} est orthogonal aux vecteurs directeurs \overrightarrow{AF} et \overrightarrow{AH} du plan (AFH) donc (EC) est orthogonale à deux droites sécantes de (AFH) donc (EC) ou (EI) est orthogonale au plan (AFH) avec $I \in (AFH)$
- 4. $\overrightarrow{AI} \cdot \overrightarrow{HF} = (\overrightarrow{AE} + \overrightarrow{EI}) \cdot \overrightarrow{HF} = \overrightarrow{AE} \cdot \overrightarrow{HF} + \overrightarrow{EI} \cdot \overrightarrow{HF}$ (AE) est orthogonale au plan (EHF) donc à toute droite du plan (EHF) donc à la droite (HF) et $\overrightarrow{AE} \cdot \overrightarrow{HF} = 0$ (EI) est orthogonale au plan (AFH) donc à toute droite du plan (AFH) donc à la droite (HF) et $\overrightarrow{EI} \cdot \overrightarrow{HF} = 0$ donc $\overrightarrow{AI} \cdot \overrightarrow{HF} = 0$

$$\overrightarrow{HI} \cdot \overrightarrow{AF} = (\overrightarrow{HE} + \overrightarrow{EI}) \cdot \overrightarrow{AF} = \overrightarrow{HE} \cdot \overrightarrow{AF} + \overrightarrow{EI} \cdot \overrightarrow{AF}$$
 (HE) est orthogonale au plan (ABF) donc à toute droite du plan (ABF) donc à la droite (AF) et $\overrightarrow{HE} \cdot \overrightarrow{AF} = 0$ (EI) est orthogonale au plan (AFH) donc à toute droite du plan (AFH) donc à la droite (AF) et $\overrightarrow{EI} \cdot \overrightarrow{AF} = 0$ donc $\overrightarrow{HI} \cdot \overrightarrow{AF} = 0$

5. Dans le plan (AFH) on a : $(AI) \perp (HF)$ donc (AI) est la hauteur issue de A dans le triangle AFH et $(HI) \perp (AF)$ donc (HI) est la hauteur issue de H dans le triangle AFH donc I est le point de concours des hauteurs du triangle AFH et c'est donc l'orthocentre du triangle. Comme AF = FH = AH (diagonales des faces carrées) le triangle AFH est équilatéral et donc I est aussi le centre de gravité de AFH.

Exercice 14/15

- 1. Développer et réduire $||\overrightarrow{u} + \overrightarrow{v}||$.
- 2. En déduire les formules de polarisation du cours.
- 3. On considère une pyramide SABCD à base carrée de sommet S, de hauteur SA=6,5 cm et telle que AB=3,5 cm.
 - (a) Justifiez que (BC) et (SB) sont perpendiculaires.
 - (b) Calculer la valeur exacte de SB et SC.
 - (c) Calculer $\overrightarrow{BS} \cdot \overrightarrow{SC}$.
 - (d) En déduire l'angle \widehat{BSC} à 10^{-1} près.

Solution:

- 1. Voir cours
- 2. Voir cours
- 3. (a) (BC) est orthogonal à (AB) et (SA) est orthogonal à (BC) donc (BC) est orthogonal à (SAB) d'où le résultat.
 - (b) $SB = \sqrt{54,5}$ et $SC = \sqrt{66,75}$
 - (c) $\overrightarrow{BS} \cdot \overrightarrow{SC} = -54, 5$ (utiliser la formule de polarisation)
 - (d) $\widehat{BSC} \approx 25, 4^{\circ}$

 T^{le} spé 26/02/2024

Exercice 15/15

L'espace est muni d'un repère orthonormal $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. Soit \mathcal{P} le plan défini par le point M(-1;1;0) et par le vecteur normal $\overrightarrow{n}(2;3;5)$. Soit A(1; -4; 5).

On veut déterminer la distance du point A au plan \mathcal{P} , c'est à dire la distance AH, où H est le projeté orthogonal de A sur \mathcal{P} .

- 1. Exprimer $\overrightarrow{AM} \cdot \overrightarrow{n}$ en fonction de la distance AH.
- 2. Calculer d'une autre façon $|\overrightarrow{AM} \cdot \overrightarrow{n}|$.
- 3. En déduire la distance de A au plan \mathcal{P} .

Solution:

- 1. $\overrightarrow{AM} \cdot \overrightarrow{n} = \sqrt{38} \times AH$
- 2. $|\overrightarrow{AM} \cdot \overrightarrow{n}| = 14$.
- 3. $AH = \frac{14}{\sqrt{38}} \approx 2,27$